Giúp mình nhanh với Cho 0< apha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(tan\alpha=3\)
\(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\)
\(\Rightarrow cos\alpha=\pm\sqrt{\dfrac{1}{1+tan^2\alpha}}=\pm\sqrt{\dfrac{1}{1+3^2}}=\pm\dfrac{\sqrt{10}}{10}\)
\(\Rightarrow A\)
`tan a =3 <=> (sina)/(cosa) =3 <=> sina=3cosa`
Có: `sin^2a+cos^2a =1`
`<=> (3cosa)^2 + cos^2a =1`
`<=> 10cos^2a =1`
`<=> cosa = \pm \sqrt10/10`
`=>` A.
(x2 - 1)(x2 - 4) < 0
Bất đẳng thức xảy ra
<=> 2 thừa số trái dấu .
Xét \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\Leftrightarrow1< x^2< 4\)
Trường hợp ngược lại , ta thấy trái dấu
=> Loại .
Vậy 1 < x2 < 4
Vì đề bài không yêu cầu xác định số nguyên , hay số tự nhiên hoặc số gì đó nên tớ viết như thôi .
ta co 0^1=0^2=...=0^n=0
1^1=1^2=...=1^n=1
Ta có : \(0^1=0^3=\cdot\cdot\cdot=0^n=0\left(n\ge2\right)\)
\(1^1=1^2=\cdot\cdot\cdot=1^n=1\left(n\ge2\right)\)
Vậy bài toán đã được chứng minh
Đề kia bị dính vào nhau, các bạn nhìn ảnh cho rõ nhé
3.
\(\overrightarrow{AB}=\left(4;2\right)=2\left(2;1\right)\)
Do đó đường thẳng AB nhận \(\left(-1;2\right)\) là 1 vtpt
4.
\(\overrightarrow{AB}=\left(-a;b\right)\)
\(\Rightarrow\) Đường thẳng AB nhận (b;a) là 1 vtpt