K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2021

\(tan\alpha=3\)

\(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\)

\(\Rightarrow cos\alpha=\pm\sqrt{\dfrac{1}{1+tan^2\alpha}}=\pm\sqrt{\dfrac{1}{1+3^2}}=\pm\dfrac{\sqrt{10}}{10}\)

\(\Rightarrow A\)

3 tháng 3 2021

`tan a =3 <=> (sina)/(cosa) =3 <=> sina=3cosa`

Có: `sin^2a+cos^2a =1`

`<=> (3cosa)^2 + cos^2a =1`

`<=> 10cos^2a =1`

`<=> cosa = \pm \sqrt10/10`

`=>` A.

3 tháng 3 2021

answer-reply-image

Bạn tham khảo

5 tháng 3 2021

answer-reply-image

Câu e nhé

5 tháng 3 2021

Cảm ơn nhìu 

14 tháng 4 2019

1.

\(\frac{\pi}{2}< x< \pi\\ \Rightarrow cosx< 0,sinx>0,cotx< 0\)

\(cotx=\frac{1}{tanx}=\frac{-1}{3}\)

\(1+tan^2x=\frac{1}{cos^2x}\\ \Rightarrow cosx=\sqrt{\frac{1}{1+tan^2}}=\sqrt{\frac{1}{1+9}}=-\frac{\sqrt{10}}{10}\)

\(sinx=\sqrt{1-cos^2x}=\sqrt{1-\frac{10}{100}}=\frac{3\sqrt{10}}{10}\)

ĐKXĐ: x>=-1/2

\(\sqrt[3]{x-3}+3\sqrt{2x+1}=10\)

=>\(\sqrt[3]{x-3}-1+3\sqrt{2x+1}-9=0\)

=>\(\dfrac{x-3-1}{\sqrt[3]{\left(x-3\right)^2}+\sqrt[3]{x-3}+1}+3\left(\sqrt{2x+1}-3\right)=0\)

=>\(\dfrac{x-4}{\sqrt[3]{\left(x-3\right)^2}+\sqrt[3]{x-3}+1}+3\cdot\dfrac{2x+1-9}{\sqrt{2x+1}+3}=0\)

=>\(\left(x-4\right)\left(\dfrac{1}{\sqrt[3]{\left(x-3\right)^2}+\sqrt[3]{x-3}+1}+\dfrac{6}{\sqrt{2x+1}+3}\right)=0\)

=>x-4=0

=>x=4(nhận)

24 tháng 12 2023

24 tháng 12 2023

Cái này mình làm ở dưới rồi đấy ah

 

NV
18 tháng 3 2021

\(C=180^0-\left(A+B\right)=75^0\)

Áp dụng định lý hàm sin:

\(\dfrac{b}{sinB}=\dfrac{c}{sinC}\Rightarrow c=\dfrac{b.sinC}{sinB}=\dfrac{8.sin75^0}{sin45^0}=4+4\sqrt{3}\)