K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2019

sửa:\(\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x}\)

Áp dụng bđt AM-GM ta có:

\(\sqrt{\left(x+2y\right).1}\le\frac{x+2y+1}{2}\)

\(\sqrt{\left(y+2z\right).1}\le\frac{y+2x+1}{2}\)

\(\sqrt{\left(z+2x\right).1}\le\frac{z+2x+1}{2}\)

Cộng từng vế đẳng thức trên ta được:

\(\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x}\le\frac{3\left(x+y+z\right)+3}{2}=3\)

Dấu"="xảy ra \(\Leftrightarrow x+2y=1;y+2z=1;z+2x=1;x=y=z;x+y+z=1\)

                       \(\Leftrightarrow x=y=z=\frac{1}{3}\)

Vậy...

25 tháng 9 2019

\(VT=x\sqrt{y}+\frac{1}{2}y\sqrt{4\left(2x+2y\right)}\le\frac{x\left(y+1\right)}{2}+\frac{1}{2}y\left(\frac{4+2x+2y}{2}\right)\)

\(=\frac{2xy+2x}{4}+\frac{4y+2xy+2y^2}{4}=\frac{2\left(x+2y\right)+4xy+2y^2}{4}\)

\(=\frac{2\left(x+2y\right)+\frac{2}{3}.3y\left(2x+y\right)}{4}\le\frac{2\left(x+2y\right)+\frac{2}{3}\left(\frac{2\left(x+2y\right)}{2}\right)^2}{4}\le3\) (*)

Đẳng thức xảy ra khi x= y = 1.

Is that true? Bài  này khó nhằn đấy, Đối với mình việc nhìn ra chỗ  (*) ko dễ chút nào, chả biết có tính sai gì ko nữa..

29 tháng 12 2020

Nguyễn Việt Lâm

NV
30 tháng 12 2020

Đề sai, nếu \(x+y+z=3\) thì vế phải là \(3\sqrt{3}\)

Muốn vế phải là 3 thì \(x+y+z=1\)

\(VT\le\sqrt{3\left(x+2y+y+2z+z+2x\right)}=\sqrt{9\left(x+y+z\right)}=3\sqrt{3}\)

AH
Akai Haruma
Giáo viên
27 tháng 12 2019

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x})^2\leq [(x+2y)+(y+2z)+(z+2x)](1+1+1)\)

\(\Leftrightarrow (\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x})^2\leq 9(x+y+z)=9\)

\(\Rightarrow \sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x}\leq 3\)

Ta có đpcm

Dấu "=" xảy ra khi \(\left\{\begin{matrix} \frac{\sqrt{x+2y}}{1}=\frac{\sqrt{y+2z}}{1}=\frac{\sqrt{z+2x}}{1}\\ x+y+z=1\end{matrix}\right.\) hay $x=y=z=\frac{1}{3}$

25 tháng 12 2019

.