tính tổng \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2008}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{\frac{5}{2008}-\frac{5}{2009}-\frac{5}{2010}}+\frac{\frac{2}{2007}-\frac{2}{2008}-\frac{2}{2009}}{\frac{3}{2007}-\frac{3}{2008}-\frac{3}{2009}}\)
\(=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{5.\left(\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)}+\frac{2.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}{3.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}\)
\(=\frac{1}{5}+\frac{2}{3}\)
\(=\frac{13}{15}\)
Xét tử ta có:
\(2008+\frac{2007}{2}+\frac{2006}{3}+....+\frac{1}{2008}\)
= \(1+\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+...+\left(1+\frac{1}{2008}\right)\)
= \(\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2008}\)
= \(2009.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2009}\right)\)
=> A = \(\frac{2009.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2009}}\)
=> A = 2009
A=\(\frac{\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+\left(1+\frac{2005}{4}\right)+...........+\left(1+\frac{2}{2008}\right)+\left(1+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{2008}+\frac{1}{2009}}\)=\(\frac{\frac{2009}{2}+\frac{2009}{3}+\frac{2009}{4}+....+\frac{2009}{2008}+\frac{2009}{2009}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\frac{ }{ }\)
=\(\frac{2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2008}+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2008}+\frac{1}{2009}}\frac{ }{ }\)
=2009
Vay A=2009
2008 + 2007/2 + 2006/3 + 2005/4 + ... + 2/2007 + 1/2008
2009-1/1 + 2009-2/2 + 2009-3/3 + 2009-4/4 + ... + 2009-2007/2007 + 2009-2008/2008
2009 - 1 + 2009/2 - 1 + 2009/3 - 1 + 2009/4 - 1 + ... + 2009/2007 - 1 + 2009/2008 - 1
2009 + 2009.(1/2 + 1/3 + 1/4 + ... + 1/2007 + 1/2008 ) - ( 1 + 1 + 1 + 1 + ... + 1 + 1 )
2009 + 2009.( 1/2 + 1/3 + 1/4 + ... + 1/2007 + 1/2008 ) - 2008
1 + 2009.( 1/2 + 1/3 + 1/4 + ... + 1/2007 + 1/2008 )
2009.( 1/2 + 1/3 + 1/4 + ... + 1/2007 + 1/2008 + 1/2009 )
=> giá trị của biểu thức trên là 2009
câu hỏi hay......nhưng tui xin nhường cho các bn khác
Hãy tích đúng cho tui nha
THANKS
có : Q = [ 2 + 2^2 ] + [ 2^3 +2^4] + ... + [2^9 + 2^10]
Q = 2 [1+2] +2^3[1 +2]+ ...+ 2^9 [1+2]
Q = 2 . 3+2^3 .3 +... + 2^9 .3
Q = 3. [ 2 + 2^3 +... + 2^9]
Vậy Q chia hết cho 3
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2008}}\)
\(3.A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}\)
\(3.A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2008}}\right)\)
\(\Rightarrow2.A=1-\frac{1}{3^{2008}}\)
\(\Rightarrow A=\left(1-\frac{1}{3^{2008}}\right):2\)
\(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2008}}\)
\(3A=3\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2008}}\right)\)
\(3A=1+\frac{1}{3}+...+\frac{1}{3^{2007}}\)
\(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^{2007}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2008}}\right)\)
\(2A=\frac{1}{3^{2007}}-\frac{1}{3}\)
\(A=\frac{\frac{1}{3^{2007}}-\frac{1}{3}}{2}\)
2008=1+1+1+...+1 có 2008 số 1
1+(1+2007/2)+(1+2006/3)+...+(1+1/2008)=2009/2009+2009/2+2009/3+...+2009/2008
=2009*(1/2009+1/2+1/3+...+1/2008)=2009*(1/2+1/3+...+1/2009)
ta có 2008+2007/2+...+1/2008
1/2+1/3+..............+1/2009
=2009
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2008}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2008}}\right)\)
\(2A=1-\frac{1}{3^{2008}}\)
\(A=\frac{\left(1-\frac{1}{3^{2008}}\right)}{2}\)