Tìm Min và max:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\dfrac{1-cos2x}{2}\right)^2+2\left(\dfrac{1+cos2x}{2}\right)^2\)
\(=\dfrac{3}{4}cos^22x+\dfrac{1}{2}cos2x+\dfrac{3}{4}\)
\(A=\dfrac{1}{12}\left(3cos2x+1\right)^2+\dfrac{2}{3}\ge\dfrac{2}{3}\)
\(A_{min}=\dfrac{2}{3}\) khi \(cos2x=-\dfrac{1}{3}\)
\(A=\dfrac{3cos^22x+2cos2x-5}{4}+2=\dfrac{\left(3cos2x+5\right)\left(cos2x-1\right)}{4}+2\le2\)
\(A_{max}=2\) khi \(cos2x=1\)
Đặt \(P=a+b+c\)
\(P^2=\left(a+b+c\right)^2=\left(1.a+\dfrac{1}{2}.2b+\dfrac{1}{3}.3c\right)^2\le\left(1^2+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{3}\right)^2\right)\left(a^2+4b^2+9c^2\right)\)
\(\Rightarrow P^2\le\dfrac{49}{36}\left(a^2+4b^2+9c^2\right)=\dfrac{49}{36}\)
\(\Rightarrow-\dfrac{7}{6}\le P\le\dfrac{7}{6}\)
\(P_{min}=-\dfrac{7}{6}\) khi \(\left(a;b;c\right)=\left(-\dfrac{6}{7};-\dfrac{3}{14};-\dfrac{2}{21}\right)\)
\(P_{max}=\dfrac{7}{6}\) khi \(\left(a;b;c\right)=\left(\dfrac{6}{7};\dfrac{3}{14};\dfrac{2}{21}\right)\)