K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 7 2021

\(A=\left(\dfrac{1-cos2x}{2}\right)^2+2\left(\dfrac{1+cos2x}{2}\right)^2\)

\(=\dfrac{3}{4}cos^22x+\dfrac{1}{2}cos2x+\dfrac{3}{4}\)

\(A=\dfrac{1}{12}\left(3cos2x+1\right)^2+\dfrac{2}{3}\ge\dfrac{2}{3}\)

\(A_{min}=\dfrac{2}{3}\) khi \(cos2x=-\dfrac{1}{3}\)

\(A=\dfrac{3cos^22x+2cos2x-5}{4}+2=\dfrac{\left(3cos2x+5\right)\left(cos2x-1\right)}{4}+2\le2\)

\(A_{max}=2\) khi \(cos2x=1\)

NV
9 tháng 4 2021

\(P=\dfrac{4x^2+2xy-\left(x^2+y^2\right)}{2xy-2y^2+3\left(x^2+y^2\right)}=\dfrac{3x^2+2xy-y^2}{3x^2+2xy+y^2}\)

Biểu thức này không tồn tại max mà chỉ tồn tại min

\(P=\dfrac{-2\left(3x^2+2xy+y^2\right)+9x^2+6xy+y^2}{3x^2+2xy+y^2}=-2+\dfrac{\left(3x+y\right)^2}{2x^2+\left(x+y\right)^2}\ge-2\)

NV
8 tháng 4 2021

Bạn coi lại mẫu số

NV
3 tháng 3 2019

Giả sử các biểu thức đều có nghĩa

\(A=2\left(\left(sin^2x\right)^3+\left(cos^2x\right)^3\right)-3\left(sin^4x+cos^4x+2sin^2xcos^2x-2sin^2xcos^2x\right)\)

\(A=2\left(sin^2x+cos^2x\right)\left(\left(sin^2x+cos^2x\right)^2-3sin^2xcos^2x\right)-3\left(\left(sin^2x+cos^2x\right)^2-2sin^2xcos^2x\right)\)

\(A=2\left(1-3sin^2xcos^2x\right)-3\left(1-2sin^2xcos^2x\right)\)

\(A=2-6sin^2xcos^2x-3+6sin^2xcos^2x=-1\)

b/ \(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{tanx-1}=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{\dfrac{1}{cotx}-1}\)

\(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2cotx}{1-cotx}=\dfrac{1+cotx-2cotx}{1-cotx}=\dfrac{1-cotx}{1-cotx}=1\)

c/ \(C=cos^4x-sin^4x+cos^4x+sin^2xcos^2x+3sin^2x\)

\(C=\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)+cos^2x\left(cos^2x+sin^2x\right)+3sin^2x\)

\(C=cos^2x-sin^2x+cos^2x+3sin^2x\)

\(C=2cos^2x+2sin^2x=2\left(cos^2x+sin^2x\right)=2\)

NV
9 tháng 6 2020

\(B=cos^2x.cot^2x+cos^2x-cot^2x+2\left(sin^2x+cos^2x\right)\)

\(=cos^2x\left(cot^2x+1\right)-cot^2x+2\)

\(=\frac{cos^2x}{sin^2x}-cot^2x+1=cot^2x-cot^2x+1=1\)

\(M=cos^4x-sin^4x+cos^4x+sin^2x.cos^2x+3sin^2x\)

\(=\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)+cos^2x\left(cos^2x+sin^2x\right)+3sin^2x\)

\(=cos^2x-sin^2x+cos^2x+3sin^2x\)

\(=2\left(sin^2x+cos^2x\right)=2\)

NV
17 tháng 4 2021

\(A=\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)\Rightarrow-\sqrt{2}\le A\le\sqrt{2}\)

B ko rõ đề

\(C=\sqrt{a^2+b^2}\left(\dfrac{a}{\sqrt{a^2+b^2}}sinx-\dfrac{b}{\sqrt{a^2+b^2}}cosx\right)\)

Đặt \(\dfrac{a}{\sqrt{a^2+b^2}}=cosy\Rightarrow\dfrac{b}{\sqrt{a^2+b^2}}=siny\)

\(\Rightarrow C=\sqrt{a^2+b^2}\left(sinx.cosy-cosx.siny\right)=\sqrt{a^2+b^2}sin\left(x-y\right)\)

\(\Rightarrow-\sqrt{a^2+b^2}\le C\le\sqrt{a^2+b^2}\)

\(D=\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=sin^2x-cos^2x=-cos2x\)

\(\Rightarrow-1\le D\le1\)

NV
1 tháng 7 2020

a/ \(P=sin^2x+cos^2x+cos^2x=1+cos^2x\)

\(0\le cos^2x\le1\Rightarrow1\le P\le2\)

\(P_{min}=1\) khi \(cosx=0\)

\(P_{max}=2\) khi \(cosx=\pm1\)

b/ \(P=8sin^2x+3\left(1-2sin^2x\right)=3+2sin^2x\)

\(0\le sin^2x\le1\Rightarrow3\le P\le5\)

\(P_{min}=3\) khi \(sinx=0\)

\(P_{max}=5\) khi \(sinx=\pm1\)

c/ \(P=\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=sin^2x-cos^2x=-cos2x\)

\(-1\le cos2x\le1\Rightarrow-1\le P\le1\)

\(P_{min}=-1\) khi \(cos2x=1\)

\(P_{max}=1\) khi \(cos2x=-1\)

d/ \(P=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)

\(=1-3sin^2x.cos^2x=1-\frac{3}{4}\left(2sinx.cosx\right)^2=1-\frac{3}{4}sin^22x\)

\(0\le sin^22x\le1\Rightarrow\frac{1}{4}\le P\le1\)

\(P_{min}=\frac{1}{4}\) khi \(sin2x=\pm1\)

\(P_{max}=1\) khi \(sin2x=0\)

1 tháng 7 2020

thanks bn nhiều

NV
10 tháng 4 2019

Trắc nghiệm thì chuyển hết sang vế trái, sau đó cho đại x 1 giá trị nào đó ko đẹp (ví dụ \(\frac{\pi}{5}\)) rồi dùng tính năng CALC để bấm, cái nào ra bằng 0 thì chọn (chọn x ko đẹp để loại trừ khả năng tình cờ đúng ở các giá trị đặc biệt)

Còn ko thì biến đổi từng con một:

a/ \(sin^4x-cos^4x=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)=sin^2x-cos^2x\)

\(=1-cos^2x-cos^2x=1-2cos^2x\) (đúng luôn)

Khỏi cần quan tâm các câu còn lại

10 tháng 4 2019

Oke cám mơn bạn nhìu

NV
3 tháng 11 2021

Đặt \(\sqrt{x^2+4x+5}=t\Rightarrow t\in\left[\sqrt{5};\sqrt{17}\right]\)

\(\Rightarrow y=f\left(t\right)=t^2-2t+7\)

\(-\dfrac{b}{2a}=1\notin\left[\sqrt{5};\sqrt{17}\right]\)

\(f\left(\sqrt{5}\right)=10+4\sqrt{5}\) ; \(f\left(\sqrt{17}\right)=22+4\sqrt{17}\)

\(\Rightarrow y_{min}=10+4\sqrt{5}\) ; \(y_{max}=22+4\sqrt{17}\)

3 tháng 11 2021

|x^2-x-m|=2x-1.Tìm m để pt có 4 nghiệm phân biệt

giúp ạ

NV
10 tháng 4 2019

\(cos^4x-sin^4x=\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)\)

\(=cos^2x-sin^2x=cos^2x-\left(1-cos^2x\right)\)

\(=2cos^2x-1\)

NV
4 tháng 2 2021

\(sinx+cosx=m\Leftrightarrow\left(sinx+cosx\right)^2=m^2\)

\(\Leftrightarrow1+2sinx.cosx=m^2\Rightarrow sinx.cosx=\dfrac{m^2-1}{2}\)

\(A=sin^2x+cos^2x=1\)

\(B=sin^3x+cos^3x=\left(sinx+cosx\right)^3-3sinx.cosx\left(sinx+cosx\right)\)

\(=m^3-\dfrac{3m\left(m^2-1\right)}{2}=\dfrac{2m^3-3m^3+3m}{2}=\dfrac{3m-m^3}{2}\)

\(C=\left(sin^2+cos^2x\right)^2-2\left(sinx.cosx\right)^2=1-2\left(\dfrac{m^2-1}{2}\right)^2\)

\(D=\left(sin^2x\right)^3+\left(cos^2x\right)^3=\left(sin^2x+cos^2x\right)^3-3\left(sin^2x+cos^2x\right)\left(sinx.cosx\right)^2\)

\(=1-3\left(\dfrac{m^2-1}{2}\right)^2\)