K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2022

\(VT=sin^2x.\dfrac{sinx}{cosx}+cos^2x.\dfrac{cosx}{sinx}+2sinx.cosx\)

\(=\dfrac{sin^4x+cos^4x+2sin^2x.cos^2x}{sinx.cosx}=\dfrac{\left(sin^2x+cos^2x\right)^2}{sinx.cosx}=\dfrac{1}{sinx.cosx}\)

\(=\dfrac{sin^2x+cos^2x}{sinx.cosx}=tanx+cota=VP\)

 

18 tháng 4 2022

VP là gì v ạ?

25 tháng 7 2017

Ta có:

26 tháng 6 2019

\(VT=\sin^2\alpha.\frac{\sin\alpha}{\cos\alpha}+\cos^2\alpha.\frac{\cos\alpha}{\sin\alpha}+2\sin\alpha.\cos\alpha\)

\(=\frac{\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha}{\sin\alpha.\cos\alpha}=\frac{\left(\sin^2\alpha+\cos^2\alpha\right)^2}{\sin\alpha.\cos\alpha}=\frac{1}{\sin\alpha.\cos\alpha}\)

\(=\frac{\sin^2\alpha+\cos^2\alpha}{\sin\alpha.\cos\alpha}=\tan\alpha+\cot\alpha=VP\)

P/s: đổi \(\alpha\) thành x nha! Làm gần hết bài ms nhớ ra ! :D

31 tháng 3 2021

\(\dfrac{tanx}{sinx}-\dfrac{sinx}{cotx}=cosx\)

\(\Leftrightarrow\dfrac{\dfrac{sinx}{cosx}}{sinx}-\dfrac{sinx}{\dfrac{cosx}{sinx}}=cosx\)

\(\Leftrightarrow\dfrac{1}{cosx}-\dfrac{sin^2x}{cosx}=cosx\)

\(\Leftrightarrow\dfrac{cos^2x}{cosx}=cosx\)

\(\Rightarrowđpcm\)

18 tháng 8 2023

\(a,1+tan^2x=\dfrac{1}{cos^2x}\\ VT=1+\dfrac{sin^2x}{cos^2x}\\ =\dfrac{cos^2x}{cos^2x}+\dfrac{sin^2x}{cos^2x}\\ =\dfrac{sin^2x+cos^2x}{cos^2x}=\dfrac{1}{cos^2x}=VP\)

\(b,VT=\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}\\ =\dfrac{sin^2x+cos^2x}{cosx.sinx}=\dfrac{1}{cosx.sinx}=VP\)

18 tháng 6 2020

\(VT:\frac{1}{1+tanx}+\frac{1}{1+cotx}\)

\(=\frac{1}{1+\frac{sinx}{cosx}}+\frac{1}{1+\frac{cosx}{sinx}}\)

\(=\frac{cosx}{sinx+cosx}+\frac{sinx}{sinx+cosx}\)

\(=\frac{cosx+sinx}{cosx+sinx}=1=VP\)

\(\dfrac{tanx+1}{tanx-1}=\dfrac{1+cotx}{1-cotx}\)

=>(tanx+1)(1-cotx)=(1+cotx)(tan x-1)

=>tan x-1+1-cot x=tan x-1+1-cot x

=>tan x-cot x=tan x-cot x(luôn đúng)

=>ĐPCM

19 tháng 4 2018

\(\dfrac{sin^2x}{1+cotx}-\dfrac{cos^2x}{1+tanx}=\dfrac{sin^2x}{1+\dfrac{cosx}{sinx}}-\dfrac{cos^2x}{1+\dfrac{sinx}{cosx}}=\dfrac{sin^2x}{\dfrac{sinx+cosx}{sinx}}-\dfrac{cos^2x}{\dfrac{cosx+sinx}{cosx}}=\dfrac{sin^3x}{sinx+cosx}-\dfrac{cos^3x}{sinx+cosx}=\dfrac{\left(sinx-cosx\right)\left(sin^2x-sinx\cdot cosx+cos^2x\right)}{sinx+cosx}=\dfrac{\left(sinx-cosx\right)\left(1-sinx\cdot cosx\right)}{sinx+cosx}\)???

20 tháng 4 2018

ahihi, thầy mình cho đề sai bạn ạ, đề đúng đây bạn: (sin^2x/1+cot^2x)-(cos^2x/1+tan^2x)=cos^2x*(tan^2x-1)

NV
11 tháng 4 2021

\(=\left(\dfrac{2sinx.cosx}{cos2x}-\dfrac{sinx}{cosx}\right)\left(2sinx.cosx-\dfrac{sinx}{cosx}\right)\)

\(=sinx\left(\dfrac{2cosx}{cos2x}-\dfrac{1}{cosx}\right).sinx\left(2cosx-\dfrac{1}{cosx}\right)\)

\(=sin^2x\left(\dfrac{2cos^2x-\left(2cos^2x-1\right)}{cosx.cos2x}\right)\left(\dfrac{2cos^2x-1}{cosx}\right)\)

\(=sin^2x\left(\dfrac{1}{cosx.cos2x}\right)\left(\dfrac{cos2x}{cosx}\right)=\dfrac{sin^2x}{cos^2x}=tan^2x\)