K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2016

1/1+2 + 1/1+2+3 +1/1+2+3+4 +...+1/1+2+3+...+50

Ta có 2/2(1+2)+2/2(1+2+3)+...+2/2(1+2+...+50)

=2/6+2/12+2/20+...+2/2550

=2/2.3+2/3.4+...+2/50.51

=2(1/2.3+1/3.4+...+1/50.51)

=2(1/1-1/2+1/2-...+1/50-1/51)

=2.(1-1/51)

=2.50/51=100/51

16 tháng 7 2015

\(=\frac{1}{3}-\frac{3}{4}+\frac{3}{5}+\frac{1}{64}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}=\left(\frac{1}{3}+\frac{3}{5}+\frac{1}{15}\right)+\left(-\frac{3}{4}-\frac{2}{9}-\frac{1}{36}\right)+\frac{1}{64}\)

= 1 + -1 + 1/64 

= 0 +1/64 

= 1/64

17 tháng 8 2018

C = 1/3 + -3/4 + 3/5 + 1/57 + -1/36 + 1/15 + -2/9

C = ( 1/3 + 1/57 ) + ( -3/4 + -1/36 ) + ( 3/5 + 1/15 ) + -2/9 

C = ( 19/57 + 1/57 ) + ( -27/36 + -1/36 ) + ( 9/15 + 1/15 ) + -2/9 

C = 20/57 + -28/36 + 10/15 + -2/9 

C = 20/57 + -7/9 + 2/3 + -2/9

C = ( 20/57 + 2/3 ) + ( -7/9 + -2/9 )

C = 58/57 + -1 

C = 1/57

D = 1/2 + -1/5 + -5/7 + 1/6 + -3/35 + 1/3 + 1/41

D = ( 1/2 + 1/3 + 1/6 ) + ( -1/5 + -5/7 +-3/35 ) + 1/41

D = ( 3/6 + 2/6 + 1/6 ) + ( -7/35 + -25/35 + -3/35 ) + 1/41

D = 1 + -1 + 1/41

D = 1/41

E = -1/2 + 3/5 + -1/9 + 1/127 + -7/18 + 4/35 + 2/7 

E = ( -1/2 + -1/9 + -7/18 ) + ( 3/5 + 4/35 ) + 1/127 + 2/7

E = ( -9/18 + -2/18 + -7/18 ) + ( 21/35 + 4/35 ) + 1/127 + 2/7

E = -1 + 5/7 + 1/257 + 2/7 

E = -1 + ( 5/7 + 2/7 ) + 1/127

E = -1 + 1 + 1/127

E = 1/127

17 tháng 8 2018

\(C=\frac{1}{3}+\frac{-3}{4}+\frac{3}{5}+\frac{1}{57}+\frac{-1}{36}+\frac{1}{15}+\frac{-2}{9}.\)

\(C=\left(\frac{1}{3}+\frac{3}{5}+\frac{1}{15}\right)-\left(\frac{3}{4}+\frac{1}{36}+\frac{2}{9}\right)+\frac{1}{57}\)

\(C=1-1+\frac{1}{57}\)

\(C=\frac{1}{57}\)

12 tháng 5 2015

Đặt A = \(\frac{\frac{1}{2}}{1+2}+\frac{\frac{1}{2}}{1+2+3}+...+\frac{\frac{1}{2}}{1+2+3+....+100}\)

         = \(\frac{1}{2}\left(\frac{1}{2.3:2}+\frac{1}{3.4:2}+\frac{1}{4.5:2}+...+\frac{1}{100.101:2}\right)\)

         = \(\frac{1}{2}\left(\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{100.101}\right)\)

         = \(\frac{1}{2}.2\left(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{100.101}\right)\)

         = 1\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{100}-\frac{1}{101}\right)\)

         = \(\frac{1}{2}-\frac{1}{101}=\frac{101}{202}-\frac{2}{202}=\frac{99}{202}\)

19 tháng 8 2016

\(A=\frac{1}{3}-\frac{3}{4}+\frac{3}{5}+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}=\left(\frac{1}{3}-\frac{2}{9}\right)-\left(\frac{3}{4}+\frac{1}{36}\right)+\left(\frac{3}{5}+\frac{1}{15}\right)+\frac{1}{72}\\ =\frac{1}{9}-\frac{7}{9}+\frac{2}{3}+\frac{1}{72}=-\frac{2}{3}+\frac{2}{3}+\frac{1}{72}=\frac{1}{72}\)

19 tháng 8 2016

\(\frac{1}{72}\)

nha bn 

2 tháng 10 2017

\(A=\frac{1}{3}-\frac{3}{4}-\frac{-3}{5}+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)

\(\Rightarrow A=\frac{1}{3}+\frac{-3}{4}+\frac{3}{5}+\frac{1}{72}+\frac{-2}{9}+\frac{-1}{36}+\frac{1}{15}\)

\(\Rightarrow A=\left(\frac{1}{3}+\frac{3}{5}+\frac{1}{15}\right)+\left(\frac{-3}{4}+\frac{-2}{9}+\frac{-1}{36}\right)+\frac{1}{72}\)

\(\Rightarrow A=1+\left(-1\right)+\frac{1}{72}\)

\(\Rightarrow A=0+\frac{1}{72}\)

\(\Rightarrow A=\frac{1}{72}\)

16 tháng 8 2018

\(C=\frac{1}{3}+\frac{-3}{4}+\frac{3}{5}+\frac{1}{57}+\frac{-1}{36}+\frac{1}{15}+\frac{-2}{9}\)

\(=\left(\frac{1}{3}+\frac{3}{5}+\frac{1}{15}\right)+\left(\frac{-3}{4}+\frac{-2}{9}+\frac{-1}{36}\right)+\frac{1}{57}\)

\(=\frac{5+9+1}{15}+\frac{\left(-27\right)+\left(-8\right)+\left(-1\right)}{36}+\frac{1}{57}\)

\(=\frac{15}{15}+\frac{-36}{36}+\frac{1}{57}=1-1+\frac{1}{57}=\frac{1}{57}\)