rút gọn phân thức:
\(\frac{x^2-5x+4}{x^3-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{x^3-7x+6}{x^3+5x^2-2x-24}\)=\(\frac{x^3-2x^2+2x^2-4x-3x+6}{x^3-2x^2+7x^2-14x+12x-24}\)=\(\frac{x^2\left(x-2\right)+2x\left(x-2\right)-3\left(x-2\right)}{x^2\left(x-2\right)+7x\left(x-2\right)+12\left(x-2\right)}\)=\(\frac{\left(x-2\right)\left(x^2+2x-3\right)}{\left(x-2\right)\left(x^2+7x+12^{^{^{^{^{^{^{^{^{ }}}}}}}}}\right)}\)=\(\frac{\left(x-2\right)\left(x^2-x+3x-3\right)}{\left(x-2\right)\left(x^2+3x+4x+12\right)}\)=\(\frac{\left(x-2\right)\left(x-1\right)\left(x+3\right)}{\left(x-2\right)\left(x+4\right)\left(x+3\right)}\)=\(\frac{x-1}{x+4}\)
Ta có
\(\frac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}\)= \(\frac{2y}{3\left(x+y\right)^2}\)
\(\frac{x^2+2x+1}{5x^3+5x^2}=\frac{\left(x+1\right)^2}{5x^2\left(x+1\right)}=\frac{x+1}{5x^2}\)
\(a,=\dfrac{\left(x+1\right)^2}{x\left(x+1\right)}=\dfrac{x+1}{x}\\ b,=\dfrac{-\left(x^2-5x-6\right)}{\left(x+2\right)^2}=\dfrac{-\left(x+1\right)\left(x-6\right)}{\left(x+2\right)^2}\)
\(P=\left(\frac{5x+2}{x^2-10}+\frac{5x-2}{x^2+10}\right).\frac{x^2-100}{x^2+4}\)
\(P=\left[\frac{\left(5x+2\right)\left(x^2+10\right)+\left(5x-2\right)\left(x^2-10\right)}{\left(x^2-10\right)\left(x^2+10\right)}\right].\frac{x^2-100}{x^2+4}\)
\(P=\frac{5x^3+50x+2x^2+20+5x^3-50x-2x^2+20}{x^4-100}.\frac{x^2-100}{x^2+4}\)
\(P=\frac{10x^3+40}{x^4-100}.\frac{x^2-100}{x^2+4}\)
\(P=\frac{\left(10x^3+40\right)\left(x^2-100\right)}{\left(x^4-100\right)\left(x^2+4\right)}\)
P/s : MK chỉ làm đưcọ đến thế thôi!
\(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}\)
\(=\frac{x\left(x+1\right)+\left(x+1\right)}{x\left(x-1\right)+2x^2-2x+x+1}\)
\(=\frac{\left(x+1\right)\left(x+1\right)}{x\left(x-1\right)+2\left(x-1\right)+\left(x+1\right)}\)
Ddeeff sao rồi bạn ko rút gọn được
a)\(\frac{x^3-x}{3x+3}=\frac{x.\left(x^2-1\right)}{3.\left(x+1\right)}=\frac{x.\left(x-1\right).\left(x+1\right)}{3.\left(x+1\right)}=\frac{x.\left(x+1\right)}{3}=\frac{x^2+x}{3}\)
\(\frac{x^2-5x+4}{x^3-1}=\)\(\frac{x^2-x-4x+4}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{\left(x^2-x\right)-\left(4x-4\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{x\left(x-1\right)-4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{\left(x-1\right)\left(x-4\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{x-4}{x^2+x+1}\)