Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(A=\frac{6x+12}{\left(x+2\right)\left(2x-6\right)}=\frac{6\left(x+2\right)}{2\left(x+2\right)\left(x-3\right)}=\frac{3}{x-3}\)
b, Giá trị của x để phân thức có giá trị bằng (-2) :
\(\frac{3}{x-3}=-2\Rightarrow x=1,5\)
Ta có
\(\frac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}\)= \(\frac{2y}{3\left(x+y\right)^2}\)
\(\frac{x^2+2x+1}{5x^3+5x^2}=\frac{\left(x+1\right)^2}{5x^2\left(x+1\right)}=\frac{x+1}{5x^2}\)
a)\(\frac{x^3-x}{3x+3}=\frac{x.\left(x^2-1\right)}{3.\left(x+1\right)}=\frac{x.\left(x-1\right).\left(x+1\right)}{3.\left(x+1\right)}=\frac{x.\left(x+1\right)}{3}=\frac{x^2+x}{3}\)
tử M=4x-8+3x+6-5x-2=2x
mẫu M=(x-2)(x+2)
2) tử=0=>x=0
mẫu =0=>x=+-2
M<0=>M<-2 hoaăc 0<m<2
A=\(\frac{x^3-7x+6}{x^3+5x^2-2x-24}\)=\(\frac{x^3-2x^2+2x^2-4x-3x+6}{x^3-2x^2+7x^2-14x+12x-24}\)=\(\frac{x^2\left(x-2\right)+2x\left(x-2\right)-3\left(x-2\right)}{x^2\left(x-2\right)+7x\left(x-2\right)+12\left(x-2\right)}\)=\(\frac{\left(x-2\right)\left(x^2+2x-3\right)}{\left(x-2\right)\left(x^2+7x+12^{^{^{^{^{^{^{^{^{ }}}}}}}}}\right)}\)=\(\frac{\left(x-2\right)\left(x^2-x+3x-3\right)}{\left(x-2\right)\left(x^2+3x+4x+12\right)}\)=\(\frac{\left(x-2\right)\left(x-1\right)\left(x+3\right)}{\left(x-2\right)\left(x+4\right)\left(x+3\right)}\)=\(\frac{x-1}{x+4}\)
a)\(\frac{12x^5y^2}{8x^3y^5}=\frac{3x^2}{2y^3}\)
b)\(\frac{x^2+2x+1}{5x^2+5x}=\frac{\left(x+1\right)^2}{5x\left(x+1\right)}=\frac{x+1}{5x}\)
a/ \(\frac{3x^2}{2y^3}\)
b/ \(\frac{\left(x+1\right)^2}{5x\left(x+1\right)}=\frac{x+1}{5x}\)
\(\frac{x^2-5x+4}{x^3-1}=\)\(\frac{x^2-x-4x+4}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{\left(x^2-x\right)-\left(4x-4\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{x\left(x-1\right)-4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{\left(x-1\right)\left(x-4\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{x-4}{x^2+x+1}\)