K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 7 2021

Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn.

13 tháng 9 2023

1.

\(a,\left(-xy\right)\left(-2x^2y+3xy-7x\right)\)

\(=2x^3y^2-3x^2y^2+7x^2y\)

\(b,\left(\dfrac{1}{6}x^2y^2\right)\left(-0,3x^2y-0,4xy+1\right)\)

\(=-\dfrac{1}{20}x^4y^3-\dfrac{1}{15}x^3y^3+\dfrac{1}{6}x^2y^2\)

\(c,\left(x+y\right)\left(x^2+2xy+y^2\right)\)

\(=\left(x+y\right)^3\)

\(=x^3+3x^2y+3xy^2+y^3\)

\(d,\left(x-y\right)\left(x^2-2xy+y^2\right)\)

\(=\left(x-y\right)^3\)

\(=x^3-3x^2y+3xy^2-y^3\)

2.

\(a,\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3-y^3\)

\(b,\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^3+y^3\)

\(c,\left(4x-1\right)\left(6y+1\right)-3x\left(8y+\dfrac{4}{3}\right)\)

\(=24xy+4x-6y-1-24xy-4x\)

\(=\left(24xy-24xy\right)+\left(4x-4x\right)-6y-1\)

\(=-6y-1\)

#Toru

25 tháng 4 2018

khong dung bdt cosi nhe

25 tháng 4 2018

bài này ko dùng cô-si nhé, đề chỉ cho x,y là số thực và thỏa mãn \(xy\ge1\) chứ ko nói j đến dương, tham khảo bài lm của mk nhé:

                                BÀI LÀM

       \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)

\(\Leftrightarrow\)\(\frac{1}{1+x^2}-\frac{1}{1+xy}+\frac{1}{1+y^2}-\frac{1}{1+xy}\ge0\)

\(\Leftrightarrow\)\(\frac{1+xy-1-x^2}{\left(1+x^2\right)\left(1+xy\right)}+\frac{1+xy-1-y^2}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\)\(\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)}{\left(1+x^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\) \(\frac{x\left(y-x\right)\left(1+y^2\right)}{\left(1+x^2\right)\left(1+xy\right)\left(1+y^2\right)}+\frac{y\left(x-y\right)\left(1+x^2\right)}{\left(1+xy\right)\left(1+y^2\right)\left(1+x^2\right)}\ge0\)

\(\Leftrightarrow\)\(\frac{\left(y-x\right)\left(x+xy^2-y-x^2y\right)}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)

\(\Leftrightarrow\)\(\frac{\left(y-x\right)\left(x-y\right)\left(1-xy\right)}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)

\(\Leftrightarrow\)\(\frac{\left(x-y\right)^2\left(xy-1\right)}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)

đến đây bn tự giải thích và làm tiếp nhé

CÁCH 2:    \(VT=\frac{1}{1+x^2}+\frac{1}{1+y^2}=\frac{2+x^2+y^2}{1+y^2+x^2+x^2y^2}\)

Ta luôn có:   \(\left(a-b\right)^2\ge0\) \(\Leftrightarrow\)\(a^2-2ab+b^2\ge0\)\(\Leftrightarrow\)\(a^2+b^2\ge2ab\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(a=b\)

Áp dụng BĐT trên ta có:   \(x^2+y^2\ge2xy\) mà   \(xy\ge1\) nên  \(x^2+y^2\ge2\)

\(xy\ge1\)  \(\Rightarrow\)\(\left(xy\right)^2=x^2y^2\ge1\)

Khi đó:    \(VT=\frac{1}{1+x^2}+\frac{1}{1+y^2}=\frac{1+x^2+y^2}{1+x^2+y^2+x^2y^2}\ge\frac{2xy+1}{2xy+1+1}\ge\frac{2+2}{2xy+2}=\frac{4}{2\left(xy+1\right)}=\frac{2}{1+xy}\)

\(\Rightarrow\)\(VT\ge\frac{2}{1+xy}\)hay   \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\) (đpcm)

6 tháng 5 2017

áp dụng BĐT\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\)(x,y>0)

=>A=\(\frac{1}{xy}+\frac{2}{x^2+y^2}=\frac{2}{2xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)>=\frac{2.4}{2xy+X^2+Y^2}=\frac{8}{\left(x+y\right)^2}=8\)

dấu bằng xảy ra khi x=y=1/2

8 tháng 4 2017

a) Kết quả M = 0. Chú ý: nhân tử chung là 2f - 5 = 0.

b) Kết quả N = 300000.

c) Kết quả p = 0. Chú ý: nhân tử  x 2  + y -1 = 0.

d) Kết quả Q = 280. Chú ý: Q = (x - y)[ ( x   -   y ) 2  - xy].

AH
Akai Haruma
Giáo viên
13 tháng 11 2023

Yêu cầu đề là gì vậy bạn?

22 tháng 10 2023

b: (x-y)(x^2-2x+y)

\(=x^3-2x^2+xy-x^2y+2xy-y^2\)

\(=x^3-2x^2-x^2y+3xy-y^2\)

c: \(\left(x^2-y\right)\left(x+y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3+x^2y^2-xy-y^3-\left(x^3-y^3\right)\)

\(=x^2y^2-xy\)

d: \(3x\left(2xy-z\right)-5y\left(x^2-2\right)+3xz\)

\(=6x^2y-3xz-5x^2y+10y+3xz\)

\(=x^2y+10y\)

23 tháng 11 2021

câu 1 B 

câu 2 D

câu 3 ko bt 

câu 4 x=-1/2; x = -(căn bậc hai(3)*i-1)/4;x = (căn bậc hai(3)*i+1)/4;

câu 5 x=-5/3, x=0, x=1

23 tháng 11 2021

Câu 1:  x2 + 2 xy + y2   bằng:

A. x+ y2                   B.(x + y)2                  C. y2 – x2                  D. x2 – y2

Câu 2:  (4x + 2)(4x – 2)  bằng:

A. 4x2 + 4                  B. 4x2 – 4                 C. 16x2 + 4                D. 16x2 – 4

Câu 3: 25a2  + 9b2  - 30ab  bằng:

A.(5a-9b)2                  B.(5a – 3b)2              C.(5a+3b)2                D.(5a)2 – (3b)2

Câu 4: 8x3 +1 bằng

A.(2x+1).(4x2-2x+1)      B. (2x-1).(4x2+2x+1)       C.(2x+1)3            D.(2x)3-13

Câu 5:Thực hiện phép nhân  x(3x2 + 2x - 5) ta được:

A.3x- 2x– 5x          B. 3x+ 2x– 5x      C. 3x- 2x+5x         D. 3x+ 2x+ 5x

7 tháng 6 2020

a) x<y

<=> x.x<x.y
<=> x\(^2\)<xy

x<y
<=> x.y<y.y
<=>xy<y\(^2\)

b) áp dụng kết quả từ câu a và tính chất bắc cầu, ta có:
x\(^2\)<xy<y\(^2\)

<=> x\(^2\)<y\(^2\)

x\(^2\)<y\(^2\)

=> x\(^2\).y<y\(^2\).y

<=> x\(^2\)y<y\(^3\)(1)

x\(^2\)<y\(^2\)

=> x\(^2\).x<y\(^2\).x

<=> x\(^3\)<xy\(^2\)(2)
x<y

<=> x.xy<y.xy
<=> x\(^2\)y<xy\(^2\)(3)

Từ (1),(2) và (3) ta có
x\(^3\)<y\(^3\)