trong hình bình hành ABCD , gọi M và N theo thứ tự là trung điểm của các cạnh Cb , Cd . CMR : 2 đường thẳng AM và An chia đường chéo Bd thành 3 đoạn bằng nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là giao điểm của AC và BD => O là trung điểm AC (1), O là trung điểm BD(2)
Gọi G là giao điểm của AN và BD
N là trung điểm DC (3)
Từ (1), (3) => G là trọng tâm tam giác ADC => DG=2/3DO=\(\frac{2}{3}.\frac{1}{2}\)BC=1/3 BC
Tương tự gọi G' là giao điểm của AM và BD ta có G' là trọng tâm tam giác ABC=>BG"=2/3 BO=1/3BD
=>GG'=1/3 DB
=> DG=GG'=G'B
Xét tam giác ABC có :
AM và BO là 2 đường trung tuyến .
Áp dụng tính chất trọng tâm của 1 tam giác và tính chất 2 đường chéo trong hình bình hành ta có :
\(BF=\frac{2}{3}BO=\frac{2}{3}\times\frac{1}{2}BD=\frac{1}{3}BD\)
Xét tam giác ADC có :
\(DE=\frac{1}{3}BD\)
\(\Rightarrow EF=\frac{1}{3}BD\)
Và \(BF=FE=ED\)( đpcm)
mk làm trên facebook, đo khó vẽ hình trên đây lại ko paste được hình lên nữa. Nick face là Cung Lâm Thiên Quốc. Mong bạn thông cảm cho.!!!!!!!!
Xét tứ giác BEDF có
BE//DF
BE=DF
Do đó: BEDF là hình bình hành
Suy ra: DE//BF
Xét ΔABN có
E là trung điểm của AB
EM//NB
Do đó: M là trung điểm của AN
hay AM=MN(1)
Xét ΔDCD có
F là trung điểm của CD
FN//MD
DO đó: N là trung điểm của MC
Suy ra: MN=NC(2)
Từ (1) và (2) suy ra AM=MN=NC