tính
a. (7mũ 60 : 7 mũ 14 ) : 7 mũ 12
b. (5 mũ 32.5 mx 19 ) : ( 5 mũ 48.25)
c. (11 mũ 154 - 11 mũ 152) : 11 mũ 152
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 53 = 5.5.5 = 125
2. 27 = 2.2.2.2.2.2.2 = 128
3. 44 = 4.4.4.4 = 256
4. 73 = 7.7.7 = 343
6. 35 = 243
7. 26 = 64
8. 34 = 81
9. 83 = 512
11. 132 = 169
12. 112 = 121
13. 142 = 196
14. 152 = 225
16. 172 = 289
17. 182 = 324
18. 192 = 361
19. 202 = 400
21. 104 = 10000
22. 105 = 100000
23. 106 = 1000000
24. 107 = 10000000
a)\(\frac{3^{10}.\left(-5\right)^{21}}{\left(-5\right)^{20}.3^{12}}=\frac{-5}{9}\)
b)\(\frac{\left(-11\right)^5.13^7}{11^5.13^8}=-\frac{1}{13}\)
c)\(\frac{2^{10}.3^{10}-2^{10}.3^9}{2^9.3^{10}}=\frac{2^{10}.3^9\left(3-1\right)}{2^9.3^{10}}=2\)
d(\(\frac{5^{11}.7^{12}+5^{11}.7^{11}}{5^{12}.7^{12}+9.5^{11}.7^{11}}=\frac{5^{11}.7^{11}\left(7+1\right)}{5^{11}.7^{11}\left(35+9\right)}=\frac{1}{6}\)
a)116+115=(..................1)+(..................1)=..........................2
Vì có chữ số tận cùng là 2 nên chia hết cho 4
Bài này thì chắc phải dùng đồng dư -_-
a) Ta có:
11 đồng dư với -1 (mod 4) => 115 đồng dư với (-1)5 = -1 (mod 4) => 115 + 1 chia hết cho 4
=> 116 đồng dư với (-1)6 (mod 4)
=> 116 đồng dư với 1 (mod 4)
=> 116 - 1 chia hết cho 4
=> (116 - 1) + (115 + 1) chia hết cho 4
=> 116 + 115 chia hết cho 4
a,\(5^3.2-100:4+2^3.5\)
= 125 . 2 - 25 + 8 . 5
= 250 - 25 + 40
= 265
b, \(6^2:9+50.2-3^3.3\)
= 36 : 9 + 100 - 27 . 3
= 4 + 100 - 81
= 23
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^{59}+2^{60}\right)=3.2+3.2^3+3.2^5+..+3.2^{59}\) Vậy A chia hết cho 3
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..+\left(2^{58}+2^{59}+2^{60}\right)=7.2+7.2^4+..+7.2^{58}\) Vậy A chia hết cho 7
\(A=\left(2+2^2+2^3+2^4\right)+..+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)=2.15+2^5.15+..+2^{57}.15\) Vậy A chia hết cho 15.
\(B=\left(3+3^3+3^5\right)+..+\left(3^{1987}+3^{1989}+3^{1991}\right)=3.91+3^7.91+..+3^{1986}.91\)
mà 91 chia hết cho 13 nên B chia hết cho 13.
\(B=\left(3+3^3+3^5+3^7\right)+..+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)=3.820+3^9.820+..+3^{1985}.820\)Mà 820 chia hết cho 41 nên B chia hết cho 41.
D : để ý rằng \(11^k\) đều có đuôi là 1
nên D có đuôi là đuôi của \(1+1+..+1=10\)
Vậy D chia hết cho 5
a) \(4^{13}+4^{14}+4^{15}+4^{16}=4^{13}\left(1+4\right)+4^{14}\left(1+4\right)=4^{13}.5+4^{14}.5=5\left(4^{13}+4^{14}\right)⋮5\Rightarrow dpcm\)
c) \(2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}\)
\(=2^{10}\left(1+2+2^2\right)+2^{13}\left(1+2+2^2\right)\)
\(=2^{10}.7+2^{13}.7=7\left(2^{10}+2^{13}\right)⋮7\Rightarrow dpcm\)
Câu c bạn xem lại đê
cho dãy số 2 , 3 ,4,8 ,7,13,11,18 ,... Tìm 3 số tiếp theo của dãy và quy luật của dãy
a) \(\left(7^{60}:7^{14}\right):7^{12}\)
\(=7^{46}:7^{12}=7^{34}\)
b) \(\left(5^{32}.5^9\right):\left(5^{48}.25\right)\)
\(=\left(5^{32}.5^9\right):\left(5^{48}.5^2\right)\)
\(=5^{41}:5^{50}=-\left(5^9\right)\)
c) \(\left(11^{154}-11^{152}\right):11^{152}\)
= \(\left(11^{152}.121-11^{152}\right):11^{152}\)
=\(\left[11^{152}.\left(121-1\right)\right]:11^{152}\)
= \(11^{152}.120:11^{152}\)
= \(120\)