Cho hình tam giác ABC vuông ở A có chu vi là 120 cm. Độ dài cạnh AC lớn hơn AB 10 cm. BC dài 50 cm.
a. Tính độ dài cạnh AB; AC.
b. Tính diện tích hình tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng độ dài AB và AC là 120 - 50 = 70 (cm)
Độ dài AB là (70 - 10) : 2 = 30 (cm)
Độ dài AC là (70 + 10) : 2 = 40 (cm)
Diện tích tam giác ABC là 30 x 40 : 2 = 600 (cm2)
Chiều cao hạ từ A xuống cạnh AC là 600 : 50 = 12 (cm)
Tổng độ dài AB và AC là 120 - 50 = 70 (cm)
Độ dài AB là (70 - 10) : 2 = 30 (cm)
Độ dài AC là (70 + 10) : 2 = 40 (cm)
Diện tích tam giác ABC là 30 x 40 : 2 = 600 (cm2)
Chiều cao hạ từ A xuống cạnh AC là 600 : 50 = 12 (cm)
a) Nửa chu vi tam giác là :
\(120\div2=60\left(cm\right)\)
Độ dài đáy AC là :
\(\left(60+10\right)\div2=35\left(cm\right)\)
Độ dài đáy AB là :
\(60-35=25\left(m\right)\)
b) Chiều cao AH là :
\(60-50=10\left(m\right)\)
c) Diện tích tam giác là :
a) Tổng độ dài cạnh AB và AC là:
\(120 − 50 = 70 (cm)\)
Độ dài cạnh AB là:
\(( 70 − 10 ) : 2 = 30 (cm)\)
Độ dài cạnh AC là:
\(70 − 30 = 40 (cm)\)
b)Diện tích hình tam giác ABC là:
( 40 x 30 ) : 2 = 1200 : 2 = 600 (cm)
Vậy diện tích hình tam giác ABC = 600 cm
c)Chiều cao AH là :
\(60 − 50 = 10 ( m )\)
a) AB: 30 cm
AC: 40 cm
b) 600 cm2
c) 24 cm
Bài này không khó đâu bạn ạ, nhớ k cho mình nhé, mình viết hết KQ rồi đó.
a) Đặt độ dài cạnh AB là x (\(x > 0\))
Theo giả thiết ta có độ dài \(AC = AB + 2 = x + 2\)
Áp dụng định lý pitago trong tam giác vuông ta có
\(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{x^2} + {{\left( {x + 2} \right)}^2}} = \sqrt {2{x^2} + 4x + 4} \)
b) Chu vi của tam giác là \(C = AB + AC + BC\)
\( \Rightarrow C = x + \left( {x + 2} \right) + \sqrt {2{x^2} + 4x + 4} = 2x + 2 + \sqrt {2{x^2} + 4x + 4} \)
Theo giả thiết ta có
\(\begin{array}{l}C = 24 \Leftrightarrow 2x + 2 + \sqrt {2{x^2} + 4x + 4} = 24\\ \Leftrightarrow \sqrt {2{x^2} + 4x + 4} = 22 - 2x\\ \Rightarrow 2{x^2} + 4x + 4 = {\left( {22 - 2x} \right)^2}\\ \Rightarrow 2{x^2} + 4x + 4 = 4{x^2} - 88x + 484\\ \Rightarrow 2{x^2} - 92x + 480 = 0\end{array}\)
\( \Rightarrow x = 6\) hoặc \(x = 40\)
Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {2{x^2} + 4x + 4} = 22 - 2x\) ta thấy chỉ có \(x = 6\) thỏa mãn phương trình
Vậy độ dài ba cạnh của tam giác là \(AB = 6;AC = 8\) và \(BC = 10\)(cm)
a, Tôi nghĩ đề là AC hơn AB 10 cm
Tổng độ dài cạnh AB và AC là: 120 - 50 = 70 (cm)
Độ dài cạnh AB là: (70 - 10) : 2 = 30 (cm)
Độ dài cạnh AC là: 70 - 30 = 40 (cm)
b,
Diện tích tam giác ABC vuông là:
\(\frac{AB\times AC}{2}=\frac{30\times40}{2}=600\left(cm^2\right)\)
c,
Ta có: \(S_{ABC}=\frac{AH\times BC}{2}=\frac{AB\times AC}{2}=600\left(cm^2\right)\)
\(AH=\frac{600\times2}{BC}=\frac{600\times2}{50}=24\left(cm\right)\)
a)
* Ta có: AB + AC + BC = 120 (cm)
Suy ra: AB + AC + 50 (cm) = 120 (cm)
Suy ra: AB + AC = 120 (cm) - 50 (cm)
Suy ra: AB + AC = 70 (cm)
* Mà độ dài cạnh AC lớn hơn AB 10 cm (gt)
* Nên:
AB = ( 70 - 10 ) : 2 = 60 : 2 = 30 (cm)
AC = ( 70 + 10 ) : 2 = 80 : 2 = 40 (cm)
Vậy: AB = 30 cm ; AC = 40 cm
b)
* Diện tích hình tam giác ABC là:
( 40 x 30 ) : 2 = 120 : 2 = 60 (cm)
Vậy diện tích tam giác ABC = 60 cm
Câu b mình nkầm
Sửa lại là:
Diện tích hình tam giác ABC là:
( 40 x 30 ) : 2 = 1200 : 2 = 600 (cm)
Vậy diện tích hình tam giác ABC = 600 cm