K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2016

\(\frac{x+199}{200}+\frac{x+198}{201}+\frac{x+197}{202}=-3\)

\(\frac{x+199}{200}+1+\frac{x+198}{201}+1+\frac{x+197}{202}+1=0\)

\(\frac{x+399}{200}+\frac{x+399}{201}+\frac{x+399}{202}=0\)

\(\left(x+399\right)\left(\frac{1}{200}+\frac{1}{201}+\frac{1}{202}\right)=0\)

Mà \(\left(\frac{1}{200}+\frac{1}{201}+\frac{1}{202}\right)\ne0\)

=> x + 399 = 0

=> x = -399 

22 tháng 2 2017

vế phải đâu?

22 tháng 2 2017

ko có vế pk

8 tháng 5 2016

Đặt: \(\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{199}{1}\)là B

Cộng 1 vào mỗi phần số trừ phân số cuối cùng ta sẽ được:

B= \(\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+...+\left(\frac{198}{2}+1\right)+1\)

=> B= \(\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}+1\)

=> B= \(\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}+\frac{200}{200}\)

=> B= \(200\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)\)

Đặt \(A=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\) => B= \(200\) X A

=> \(\frac{A}{B}\)\(=\frac{1}{200}\)

=> \(\left(x-20\right).\frac{1}{200}=\frac{1}{2000}\)

=>\(x-20\) =\(\frac{1}{2000}:\frac{1}{200}\)

=> \(x-20=\).......................... Bạn tự làm tiếp nhé, chúc bạn học tốt !!!^^\(\)

9 tháng 3 2017

 \(\left(x-20\right)\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{200}}{\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}}=\frac{1}{2000}\)

\(\left(x-20\right)\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{200}}{\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+....+\left(\frac{198}{2}+1\right)+1}=\frac{1}{2000}\)

\(\left(x-20\right)\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{\frac{200}{200}+\frac{200}{199}+\frac{200}{198}+....+\frac{200}{2}}=\frac{1}{2000}\)

\(\left(x-20\right)\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}}{200\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)}=\frac{1}{2000}\)

\(\left(x-20\right).\frac{1}{200}=\frac{1}{2000}\)

\(\left(x-20\right)=\frac{1}{2000}:\frac{1}{200}=\frac{1}{2000}.200=\frac{1}{10}\)

\(\Rightarrow x=\frac{1}{10}+20=\frac{201}{10}\)

6 tháng 7 2016

\(\frac{199}{200}>\frac{199}{200+201+202}\)

\(\frac{200}{201}>\frac{200}{200+201+202}\)

\(\frac{201}{202}>\frac{201}{200+201+202}\)

=>\(A>B\)

Do \(\frac{199}{200}\)\(\frac{199}{200+201+202}\)\(\frac{200}{201}\)>\(\frac{200}{200+201+202}\),\(\frac{201}{202}\)>\(\frac{201}{200+201+202}\)nên A>B

6 tháng 7 2016

\(A=\frac{199}{200}+\frac{200}{201}+\frac{201}{202}< \frac{199}{200+201+202}+\frac{200}{200+201+202}+\frac{201}{200+201+202}\)

A                                                 \(< \frac{199+200+201}{200+201+202}=B\)

\(A< B\)

6 tháng 7 2016

Ta có: \(A=\frac{199}{200}+\frac{200}{201}+\frac{201}{202}< \frac{199}{200+201+202}+\frac{200}{200+201+202}+\frac{201}{200+201+202}< \)

                                                              \(< \frac{199+200+201}{200+201+202}\)

Vậy A < B

ỦNG HỘ TỚ NHA

                                                           

                                                           

25 tháng 7 2018

\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+\left(\frac{3}{197}+1\right)+...+\left(\frac{198}{2}+1\right)+1}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}+\frac{200}{200}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{200\cdot\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+\frac{1}{197}+...+\frac{1}{2}\right)}\)

\(=\frac{1}{200}\)

5 tháng 4 2018

\(A=\frac{1\cdot2+2\cdot3+3\cdot4+...+20\cdot21}{1+2-3-4+5+6-7-8+...+197+198-199-200+201}\)     (1)

đặt \(B=1\cdot2+2\cdot3+3\cdot4+...+20\cdot21\)

\(3B=1\cdot2\cdot3+2\cdot3\cdot3+3\cdot4\cdot3+...+20\cdot21\cdot3\)

\(3B=1\cdot2\cdot\left(3-0\right)+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+20\cdot21\cdot\left(22-19\right)\)

\(3B=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...+20\cdot21\cdot22-19\cdot20\cdot21\)

\(3B=20\cdot21\cdot22\)

\(B=\frac{20\cdot21\cdot22}{3}=3080\)    (2)

đặt \(C=1+2-3-4+5+6-7-8+...+197+197-199-200+201\)

\(C=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(197+198-199-200\right)+201\)

\(C=-4+\left(-4\right)+...+\left(-4\right)+201\)   có 50 số -4

\(C=-4\cdot50+201\)

\(C=-200+201\)

\(C=1\)    (3)

\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow A=\frac{B}{C}=\frac{30801}{1}=3080\)

5 tháng 4 2018

Còn nhớ Zoro ko ? 

31 tháng 3 2017

quen lắm

i don't now

mong thông cảm !

...........................