Giá trị x<0 thoả mãn x^4=6,25^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4=6,25^2\)
\(x^4=\left(2,5^2\right)^2\)
\(x^4=2,5^4\)
\(\Rightarrow x=-2,5\)
\(x^4=\left(6,25\right)^2\)
\(x^4=\left[\left(2,5\right)^2\right]^2\)
\(x^4=\left(2,5\right)^4\)
\(\Rightarrow\)\(x=2,5\) hoặc \(x=-2,5\)
mà theo đề bài, ta có: \(x< 0\Rightarrow x=-2,5\)
Vậy x=-2,5.
\(x^4=6,25^2\)
\(\Leftrightarrow x^4=2,5^4\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2,5\\x=2,5\left(loại\right)\end{array}\right.\)
<=> x^2=6,25
<=>x^2=2,5^2
<=>\(\orbr{\begin{cases}x=2,5\\x=-2,5\end{cases}}\)
mà x<0 nên x=-2,5
x^4=6,25^2
<=> x^4=(2.5^2)^2
<=>x^4=2.5^4
<=> x=2.5=-2.5
Mà x<0
=>x=2.5
\(x^4=6,25^2\)
Vì đề bài cho là : x < 0
\(\Rightarrow x=-\sqrt[4]{6,25^2}\)
\(\Rightarrow x=-\frac{5}{2}\)
x4 = (6,25)2
x4 = [(3,125)2]2
=>x = 3,125
Vậy x = 3,125
Mình xin lấy tính mạng để đảm bảo rằng đáp án của mình không sai!!!
x^4=6.25^2
\(\Leftrightarrow\)x=\(\sqrt{6.25}\)
\(\Leftrightarrow\)x=-2.5