K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2022

bạn tham khảo nha

Anser reply image

 
15 tháng 4 2022

d ở đâu ra vậy bạn

đề bài chỉ có a,b,c thôi mà

22 tháng 4 2018

Gọi nghiệm nguyên của P(x) là: k

ta có: \(ak^3+bk^2+ck+d=0\)

\(k.\left(ak^2+bk+k\right)=-d\)( *)

ta có: \(P_{\left(1\right)}=a+b+c+d\)

\(P_{\left(0\right)}=d\)

mà P(1); P(0) là các số lẻ

=> a+b+c+d và d là các số lẻ

mà d là số lẻ

=> a+b+c là số chẵn

Từ (*) => k thuộc Ư(d)

mà d là số lẻ

=> k là số lẻ

=> \(k^3-1;k^2-1;k-1\)là các số chẵn

\(\Rightarrow a\left(k^3-1\right)+b\left(k^2-1\right)+c\left(k-1\right)\) là số chẵn

\(=\left(ak^3+bk^2+ck\right)-\left(a+b+c\right)\)

mà a+b+c là số chẵn

\(\Rightarrow ak^3+bk^2+c\) là số chẵn

Từ (*) => d là số chẵn ( vì d là số lẻ)

=> P(x) không thể có nghiệm nguyên

10 tháng 5 2021

Gọi nghiệm nguyên của P(x) là: k

ta có: ak3+bk2+ck+d=0ak3+bk2+ck+d=0

k.(ak2+bk+k)=−dk.(ak2+bk+k)=−d( *)

ta có: P(1)=a+b+c+dP(1)=a+b+c+d

P(0)=dP(0)=d

mà P(1); P(0) là các số lẻ

=> a+b+c+d và d là các số lẻ

mà d là số lẻ

=> a+b+c là số chẵn

Từ (*) => k thuộc Ư(d)

mà d là số lẻ

=> k là số lẻ

=> k3−1;k2−1;k−1k3−1;k2−1;k−1là các số chẵn

⇒a(k3−1)+b(k2−1)+c(k−1)⇒a(k3−1)+b(k2−1)+c(k−1) là số chẵn

=(ak3+bk2+ck)−(a+b+c)=(ak3+bk2+ck)−(a+b+c)

mà a+b+c là số chẵn

⇒ak3+bk2+c⇒ak3+bk2+c là số chẵn

Từ (*) => d là số chẵn ( vì d là số lẻ)

=> P(x) không thể có nghiệm nguyên

4 tháng 5 2018

Ko biết là bạn có cần nữa ko.

Nhưng mình vẫn trả lời cho những bạn khác đang cần.

Do P(0) và P(1) lẻ nên ta có:

P(0)=d=> d là số lẻ

P(1)=a+b+c+d => a+b+c+d là số lẻ

Giả sử y là nghiệm nguyên của P(x). Khi đó:

P(y)=ay^3+by^2+cy+d=0

     =>ay^3+by^2+cy=-d

Mà d là số lẻ

=>y là số lẻ

Lại có: P(y)-P(1)=(ay^3+by^2+cy+d)-(a+b+c+d)

                         =a(y^3-1)+b(y^2-1)+c(y-1)+(d-d)

                         =a(y^3-1)+b(y^2-1)+c(y-1)

Do y là số lẻ=>P(y)-P(1) là số chẵn(1)

Mà P(y)-P(1)= 0-a+b+c+d

                   =-a-b-c-d

Do a+b+c+d lẻ

=>-a-b-c-d lẻ 

Hay P(y)-P(1) là số lẻ(2)

Vì (1) và (2) mâu thuẫn

=> Giả sử sai

Hay f(x) ko thể có nghiệm là các số nguyên(ĐCCM)

4 tháng 5 2018

 Chỗ: mà d là số lẻ bổ sung thêm cho mình: nên -d là số lẻ nha

hihi

19 tháng 11 2016

===
thế này không hiểu potay.com
f(x)=(x-a).q(x)
f(0)=(0-a).q(0) "{chỗ nào có x thay bằng 0"}
0-a=-a
=>f(0)=-a.Q(0)
tượng f(1)
===
f(0) lẻ=>(-a).q(0) lẻ
nghĩa là (a lẻ và q(0) cũng phải lẻ)
" một số lẻ không thể là tích của một số chẵn được)
tương tự
f(1) lẻ==>(1-a) & q(1) cùng lẻ

====
a & (1-a) hai số nguyên liên tiếp =>không thể cùng lẻ

4 tháng 7 2018

Nhận xét: với a, b nguyên , n nguyên dương ta có: 
aⁿ và a cùng tính chẳn, lẻ ; 
với x là số lẻ thì a.xⁿ và a cùng tính chẳn lẻ 
và do đó, với x là số lẻ ta có: 
a.xⁿ + b.x^(x-1) cùng tính chẳn lẻ với a+b 
Tổng quát: với x là số nguyên lẻ, n nguyên dương, a, b, c,... nguyên ta có: 
a.xⁿ + b.x^(x-1) +...+ cx cùng tính chẳn lẻ với a+b+..+c 
- - - - - - 
Đặt: f(x) = a.xⁿ + b.x^(x-1) + ...+ c.x + d 
có f(0) = d lẻ (do giả thiết) 
f(1) = a+b+..+ c +d lẻ => a+b+..+c chẳn với x nguyên tuỳ ý ta có hai trường hợp: 
nếu x chẳn thì: a.xⁿ + b.x^(n-1) +..+cx chẳn => f(x) lẻ (do d lẻ) 
nếu x lẻ thì từ nhận xét trên có: a.xⁿ + b.x^(n-1) +..+cx chẳn (do a+b+..+c chẳn) 
=> f(x) lẻ 

Tóm lại có f(x) là số lẻ với mọi x nguyên => f(x) # 0 với mọi x nguyên 
=> f(x) không có nghiệm nguyên 

14 tháng 8 2018

Nhận xét: với a, b nguyên , n nguyên dương ta có: 
aⁿ và a cùng tính chẳn, lẻ ; 
với x là số lẻ thì a.xⁿ và a cùng tính chẳn lẻ 
và do đó, với x là số lẻ ta có: 
a.xⁿ + b.x^(n-1) cùng tính chẳn lẻ với a+b 
tổng quát: với x là số nguyên lẻ, n nguyên dương, a, b, c,... nguyên ta có: 
a.xⁿ + b.x^(n-1) +...+ cx cùng tính chẳn lẻ với a+b+..+c 
- - - - - - 
đặt: f(x) = a.xⁿ + b.x^(n-1) + ...+ c.x + d 
có f(0) = d lẻ (do giả thiết) 
f(1) = a+b+..+ c +d lẻ => a+b+..+c chẳn 

với x nguyên tuỳ ý ta có hai trường hợp: 
nếu x chẳn thì: a.xⁿ + b.x^(n-1) +..+cx chẳn => f(x) lẻ (do d lẻ) 
nếu x lẻ thì từ nhận xét trên có: a.xⁿ + b.x^(n-1) +..+cx chẳn (do a+b+..+c chẳn) 
=> f(x) lẻ 

Tóm lại có f(x) là số lẻ với mọi x nguyên => f(x) # 0 với mọi x nguyên 
=> f(x) không có nghiệm nguyên 
~~~~~~~~~~~~