Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$P(0)=d$ lẻ
$P(1)=a+b+c+d$ lẻ, mà $d$ lẻ nên $a+b+c$ chẵn. Do đó 3 số này có thể nhận giá trị lẻ, lẻ, chẵn hoặc chẵn, chẵn, chẵn.
Giả sử $P(x)$ có nghiệm nguyên $m$. Khi đó:
$P(m)=am^3+bm^2+cm+d$
Nếu $m$ chẵn thì $am^3+bm^2+cm+d$ lẻ cho $d$ lẻ nên $P(m)\neq 0$
Nếu $m$ lẻ: Do $a,b,c$ nhận giá trị lẻ, chẵn, chẵn hoặc chẵn, chẵn, chẵn nên $am^3+bm^2+cm$ đều chẵn. Kéo theo $P(m)=am^3+bm^2+cm+d$ lẻ
$\Rightarrow P(m)\neq 0$
Tóm lại $P(m)\neq 0$
$\Rightarrow x=m$ không là nghiệm của $P(x)$. Do đó điều giả sử là sai.
Ta có đpcm.
Bài 1:
1.
$6x^3-2x^2=0$
$2x^2(3x-1)=0$
$\Rightarrow 2x^2=0$ hoặc $3x-1=0$
$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức
2.
$|3x+7|\geq 0$
$|2x^2-2|\geq 0$
Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$
$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý)
Vậy đa thức vô nghiệm.
Bài 2:
1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$
Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$
Do đó đa thức vô nghiệm
2.
$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$
$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$
Vậy đa thức khác 0 với mọi $x$
Do đó đa thức không có nghiệm.
Giả sử tồn tại \(f\left(7\right)=72\) và \(f\left(3\right)=42\). Ta có:
\(\left\{{}\begin{matrix}f\left(7\right)=a.7^3+2.b.7^2+3.c.7+4d=343a+98b+21c+4d\\f\left(3\right)=a.3^3+2.b.3^3+3.c.3+4d=27a+18b+9c+4d\end{matrix}\right.\)
\(\Rightarrow f\left(7\right)+f\left(3\right)=\left(343a+27a\right)+\left(98b+18b\right)+\left(21c+9c\right)+\left(4d+4d\right)=370a+116b+30c+8d⋮̸2\)
Mà \(f\left(7\right)+f\left(3\right)=72+42=112⋮2\)
Từ hai điều trên suy ra giả thiết sai.
Vậy không thể tồn tại \(f\left(7\right)=72\) và \(f\left(3\right)=42\)
\(f\left(x\right)=ax^3+2bx^2+3cx+4d\)
\(f\left(7\right)=a\cdot7^3+2b\cdot7^2+3c\cdot7+4d\)
\(=343a+98b+21c+4d\)
\(f\left(3\right)=a\cdot3^3+2b\cdot3^2+3c\cdot3+4d\)
\(=27a+18b+9c+4d\)
\(f\left(7\right)+f\left(3\right)=343a+98b+21c+4d+27a+18b+9c+4d\)
\(=370a+116b+30c+8d\)
\(=2\left(185a+58b+15c+4d\right)⋮2\)
mà f(7)+f(3)=72+42=114 chia hết cho 2
nên có tồn tại f(7)=72 và f(3)=42 nha bạn
Lời giải:
Giả sử tồn tại điều như đề nói.
$f(7)=343a+98b+21c+4d=72$
$f(3)=27a+18b+9c+4d=42$
$\Rightarrow f(7)-f(3)=316a+80b+12c=30$
$\Rightarrow 4(79a+20b+3c)=30$
$\Rightarrow 79a+20b+3c=\frac{30}{4}\not\in\mathbb{Z}$
(vô lý vì $a,b,c$ là các số nguyên)
Do đó điều giả sử là sai, tức là không tồn tại $f(7)=72$ và $f(3)=42$
Mấy cái này mk kho bít sorry!!!!!!253564656464646474748949474626515466575757575665555
Ta có: \(\left\{{}\begin{matrix}f\left(5\right)=125a+25b+5c+2021\\f\left(4\right)=64a+16b+4c+2021\end{matrix}\right.\)
\(f\left(5\right)-f\left(4\right)=2020\) \(\Rightarrow61a+9b+c=2020\)
Ta có: \(\left\{{}\begin{matrix}f\left(7\right)=343a+49b+7b+2021\\f\left(2\right)=8a+4b+2c+2021\end{matrix}\right.\)
\(\Rightarrow f\left(7\right)-f\left(2\right)=335a+45b+5b=5\left(61a+9b+c\right)=5.2020\)
\(\Rightarrow f\left(7\right)-f\left(2\right)\) chia hết cho 5 nên nó là hợp số.
mik ngu toán nhưng chắc đúng á :"))
vuốt tiếp đêyyy
;))
tiếp nữa đêy
tiếp đêyyyy
tiếp tiếp
tiếp đêy
nói vậy chớ mik hơm biết :))
Ko biết là bạn có cần nữa ko.
Nhưng mình vẫn trả lời cho những bạn khác đang cần.
Do P(0) và P(1) lẻ nên ta có:
P(0)=d=> d là số lẻ
P(1)=a+b+c+d => a+b+c+d là số lẻ
Giả sử y là nghiệm nguyên của P(x). Khi đó:
P(y)=ay^3+by^2+cy+d=0
=>ay^3+by^2+cy=-d
Mà d là số lẻ
=>y là số lẻ
Lại có: P(y)-P(1)=(ay^3+by^2+cy+d)-(a+b+c+d)
=a(y^3-1)+b(y^2-1)+c(y-1)+(d-d)
=a(y^3-1)+b(y^2-1)+c(y-1)
Do y là số lẻ=>P(y)-P(1) là số chẵn(1)
Mà P(y)-P(1)= 0-a+b+c+d
=-a-b-c-d
Do a+b+c+d lẻ
=>-a-b-c-d lẻ
Hay P(y)-P(1) là số lẻ(2)
Vì (1) và (2) mâu thuẫn
=> Giả sử sai
Hay f(x) ko thể có nghiệm là các số nguyên(ĐCCM)
Chỗ: mà d là số lẻ bổ sung thêm cho mình: nên -d là số lẻ nha
hihi