1+1+1+1+1+1+1+1+1+1+1++1+1+1+1+1+1+1+1+1+1+120=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt:
\(X=\left(1+\dfrac{1}{9}\right)\left(1+\dfrac{1}{10}\right)\left(1+\dfrac{1}{11}\right).....\left(1+\dfrac{1}{200}\right)\)
\(X=\dfrac{10}{9}.\dfrac{11}{10}.\dfrac{12}{11}......\dfrac{201}{200}\)
\(X=\dfrac{10.11.12......201}{9.10.11......200}\)
\(X=\dfrac{201}{9}\)
\(Y=\left(1-\dfrac{1}{10}\right)\left(1-\dfrac{1}{11}\right)\left(1-\dfrac{1}{12}\right).....\left(1-\dfrac{1}{99}\right)\)
\(Y=\dfrac{9}{10}.\dfrac{10}{11}.\dfrac{11}{12}.....\dfrac{98}{99}\)
\(Y=\dfrac{9.10.11......98}{10.11.12.....99}\)
\(Y=\dfrac{9}{99}=\dfrac{1}{11}\)
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+....+\frac{1}{105}+\frac{1}{210}\)
=> \(\frac{1}{2}A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+.....+\frac{1}{210}+\frac{1}{240}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+.....+\frac{1}{14.15}+\frac{1}{15.16}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{!}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{16}\)
\(=\frac{1}{2}-\frac{1}{16}=\frac{7}{16}\)
=> \(A=\frac{7}{8}\)
\(A=1+\dfrac{1}{8}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{80}+\dfrac{1}{120}\)
\(=1+\dfrac{1}{2\times4}+\dfrac{1}{4\times6}+\dfrac{1}{6\times8}+\dfrac{1}{8\times10}+\dfrac{1}{10\times12}\)
\(=1+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{12}\)
\(=1+\dfrac{1}{2}-\dfrac{1}{12}=\dfrac{17}{12}\)
1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+120=22+120=142