công thức tìm số giao điểm khi có n đường thẳng khác nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n=2. Có 2 cặp góc đối đỉnh nhỏ hơn góc bẹt.
n=3. Có 2 cặp cũ không liên quan đến đường thẳng thứ 3 mới và đường mới tạo với 2 đường cũ 2x2 cặp góc đối đỉnh.
n=4. Có 2+4 cặp cũ không liên quan đến đường thẳng thứ 4 mới và đường mới tạo với 3 đường cũ 2x3 cặp góc đối đỉnh.
n=5. Có 2+4+6 cặp cũ không liên quan đến đường thẳng thứ 5 mới và đường mới tạo với 4 đường cũ 2x4 cặp góc đối đỉnh.
...
n=n. Có 2+4+6+...+2*(n-2) cặp cũ không liên quan đến đường thẳng thứ n mới và đường mới tạo với (n-1) đường cũ 2x(n-1) cặp góc đối đỉnh.
Nên tổng cộng có: 2+4+6+...+2*(n-2)+2*(n-1) = 2*(1+2+3+...+(n-1))=2*1/2*(n-1)*n=n*(n-1) cặp góc đối đỉnh.
Số cách chọn ra 2 đường thẳng từ 2016 đường thẳng là :
\(2016\times\frac{2015}{2}=2031120\)
mà cứ hai đường thẳng sẽ cwast nhau tại mọt điểm nên do đó có 2031120 điểm
b. Áp dụng như câu a ta có :
\(1128=48\times\frac{47}{2}\)nên do đó có 48 đường thẳng