cho tg ABC vuong tai A. Duong cao AH, H thuoc BC, goi M, N la trung diem cua AH, BH.
1)cm AN vuong goc voi MC
2) CM: AH2=4MC.MO
3) ke HI vuong goc voi AB tai I, HK vuong goc vs AC tai K. CM: BI.CK.BC=AH3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔAHB vuôg tại H và ΔCAB vuông tại A có
góc B chung
=>ΔAHB đồng dạng với ΔCAB
b: Xét ΔAHB vuông tại H có HE là đường cao
nen AE*AB=AH^2
Xét ΔAHC vuông tạiH có HF là đường cao
nên AF*AC=AH^2
=>AE*AB=AF*AC
c: góc MEB=góc AEF=góc AHF=góc MCF
Xét ΔMEB và ΔMCF có
góc MEB=góc MCF
góc M chung
=>ΔMEB đồng dạng với ΔMCF
=>ME/MC=MB/MF
=>ME/MB=MC/MF
=>ΔMEC đồng dạng với ΔMBF
=>góc MCE=góc MFB
Bạn tự vẽ hình nhé
Xét các tam giác vuông AKM và tam giác vuông CHN có
AM=NC ( bằng 1 nửa đoạn AB=AC)
Góc MAK= góc NCH ( cùng phụ với AMC)
=> \(\Delta AKM=\Delta CHN\)( cạnh huyền - góc nhọn)
=> AK=HC ( 2 cạnh tương ứng)
Ta có NH//AK( quan hệ giữa tính vuông góc và song song) (1)
Có N là trung điểm của cạnh AC (2)
Từ (1) và (2) => NH là đường trung bình của \(\Delta ACK\)
=>H là trung điểm của KC
b) Theo câu a, ta có AK=HC và KH=HC
=>AK=HC
=> AK2+KH2=AH2
=>2.AK2=16
=>AK2=8
=>AK=KH=\(\sqrt{8}\)
=>KC=2.KH=2.\(\sqrt{8}\)=\(\sqrt{32}\)
Xét tam giác vuông AKC vuông tại K có AC2=AK2+KC2
=>AC2=8+32=40
=>\(AC=AB=\sqrt{40}\)
Diện tích tam giác ABC là
\(\frac{\sqrt{40}.\sqrt{40}}{2}=\frac{40}{2}=20\) cm2
Câu c hình như sai đề
Theo cau a ta co:
goc BAK = gocACH va AK = CH
Ta CM duoc tam giac BKA = Tam giac AHC ( c . g . c )
Suy ra goc DKA = goc AHC
Ma tam giac AKH vuong tai A
Suy ra goc AHK = 45 do
Suy ra goc AHC = 135 do ( ke bu )
Hay goc AKB = 135 do
Ta co goc AKH = 90 do Suy ra goc BKH = 135 do
Hay AKB = 135 do
Ta lai co goc AKH = 90 do Suy ra BKH = 35 do
Suy ra tam giac BKA = tam gic BKM
goc BHK = goc BAK
Do HE || AC ( cung vuong goc AB )
Suy ra goc EHM = goc ACH Va goc BAK = goc ACH
Suy ra BHK = MHE
HM la tia phan giac goc EHB
lm dc cau a c