CMR : \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2015}<1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét mẫu(chỗ 1/2014 sửa lại thành 2/2014)
=(1/2015+1)+(2/2014+1)+...+(2013/3+1)+(2014/2+1)+(2015/1-2014)
=2016/2015+2016/2014+...+2016/3+2016/2+1
=2016.(1/2016+1/2015+...+1/4+1/3+1/2)
=> A= 1/2016
mún dễ hỉu hơn hãy gửi tin nhắn cho mik
Ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Thế vô bài toán được
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\)
\(=1-\frac{1}{\sqrt{2016}}\)
Ta có :
\(B=\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{1}{2016}\)
\(B=\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{1}{2016}+1\right)+1\)
\(B=\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2016}+\frac{2017}{2017}\)
\(B=2017.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)\)
\(\Rightarrow\frac{B}{A}=\frac{2017.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}=2017\)
Vậy \(\frac{B}{A}\)là số nguyên
\(B=\frac{\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}\)
\(B=\frac{\left(\frac{2014}{2}+1\right)+...+\left(\frac{1}{2015}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}\)
\(B=\frac{\frac{2016}{2}+...+\frac{2016}{2015}+\frac{2016}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}}\)
\(B=\frac{2016\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}\)
\(B=2016\)
\(B=\frac{\frac{2015}{1}+\frac{2014}{2}+\frac{2013}{3}+\frac{2012}{4}+...+\frac{1}{2015}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}}\)
\(\Rightarrow B=\frac{1+\left(\frac{2014}{2}+1\right)+\left(\frac{2013}{3}+1\right)+\left(\frac{2012}{4}+1\right)+...+\left(\frac{1}{2015}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}}\)
\(\Rightarrow B=\frac{\frac{2016}{2016}+\frac{2016}{2}+\frac{2016}{3}+\frac{2016}{4}+...+\frac{2016}{2015}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}}\)
\(\Rightarrow B=\frac{2016\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}}\)
\(\Rightarrow B=2016\)
Vậy \(B=2016\)
1/22+1/32+1/42+......+1/20152+1/20162 < 1/1.2+1/2.3+1/3.4+.....+1/2014.2015+1/2015.2016
Mà: 1/1.2+1/2.3+1/3.4+.....+1/2014.2015+1/2015.2016
=1-1/2+1/2-1/3+1/3-1/4+.......+1/2014-1/2015+1/2015-1/2016
=1-1/2016
=2016/2016-1/2016
=2015/2016 <1
Nên 1/22+1/32+1/42+......+1/20152+1/20162 < 1