K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 4 2022

\(SA\perp\left(ABC\right)\Rightarrow AB\) là hình chiếu vuông góc của SB lên (ABC)

\(\Rightarrow\widehat{SBA}\) là góc giữa SB và (ABC)

\(AB=AC\sqrt{2}=a\sqrt{2}\)

\(tan\widehat{SBA}=\dfrac{SA}{AB}=\sqrt{\dfrac{3}{2}}\Rightarrow\widehat{SBA}\approx50^046'\)

\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\AC\perp BC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAC\right)\)

\(\Rightarrow SC\) là hình chiếu vuông góc của SB lên (SAC)

\(\Rightarrow\widehat{BSC}\) là góc giữa SB và (SAC)

\(SB=\sqrt{SA^2+AB^2}=a\sqrt{5}\) ; \(BC=AC=a\)

\(sin\widehat{BSC}=\dfrac{BC}{SB}=\dfrac{1}{\sqrt{5}}\Rightarrow\widehat{BSC}\approx26^034'\)

b.

Theo cmt, \(BC\perp\left(SAC\right)\)

Mà \(BC=\left(SBC\right)\cap\left(ABC\right)\)

\(\Rightarrow\widehat{SCA}\) là góc giữa (SBC) và (ABC)

\(tan\widehat{SCA}=\dfrac{SA}{AC}=\sqrt{3}\Rightarrow\widehat{SCA}=60^0\)

Ta có: \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\\SA\in\left(SAC\right)\end{matrix}\right.\) \(\Rightarrow\left(SAC\right)\perp\left(ABC\right)\)

\(\Rightarrow\) Góc giữa (SAC) và (ABC) là 90 độ

NV
11 tháng 4 2022

undefined

NV
21 tháng 7 2021

Gọi M là trung điểm BC \(\Rightarrow AM\perp BC\) (trung tuyến đống thời là đường cao)

Mà \(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\)

\(\Rightarrow BC\perp\left(SAM\right)\)

Trong tam giác vuông SAM, kẻ đường cao \(AH\perp SM\)

\(\Rightarrow BC\perp AH\Rightarrow AH\perp\left(SBC\right)\)

\(\Rightarrow\widehat{ASH}\) hay \(\widehat{ASM}\) là góc giữa SA và (SBC)

\(AM=\dfrac{1}{2}BC=\dfrac{1}{2}AB\sqrt{2}=\dfrac{a\sqrt{2}}{2}\)

\(tan\widehat{ASM}=\dfrac{AM}{SA}=\dfrac{\sqrt{2}}{2}\Rightarrow\widehat{ASM}\approx35^016'\)

a: (SB;(ABC))=(BS;BA)=góc SBA

BA^2+BC^2=AC^2

=>2*BA^2=AC^2

=>AB=BC=a

tan SBA=SA/SB=căn 3

=>góc SBA=60 độ

d: (SB;(BAC))=(BS;BA)=góc SBA=60 độ

e:

CB vuông góc AB

CB vuông góc SA

=>CB vuông góc (SBA)

=>(SC;(SBA))=(SC;SB)=góc BSC

SB=căn SA^2+AB^2=2a

SC=căn SA^2+AC^2=a*căn 5

Vì SB^2+BC^2=SC^2

nên ΔSBC vuông tại B

sin BSC=BC/SC=a/a*căn 5=1/căn 5

=>góc BSC\(\simeq27^0\)

a: AC vuông góc SB

AC vuông góc BC

=>AC vuông (SBC)

b: BH vuông góc SC

BH vuông góc AC

=>BH vuông góc (SAC)

=>BH vuông góc SA

c: (SA;ABC)=(AS;SB)=góc ASB

\(BA=\sqrt{CB^2+CA^2}=a\sqrt{3}\)

\(SA=\sqrt{SB^2+BA^2}=a\sqrt{7}\)

sin ASB=AB/SA=căn 3/căn 7

=>góc ASB=41 độ

(SA;(SBC))=(SA;SC)=góc ASC

\(SC=\sqrt{\left(2a\right)^2+a^2}=a\sqrt{5}\)

Vì SC^2+CA^2=SA^2

nên ΔSAC vuông tại C 

=>sin ASC=AC/SA=căn 2/căn 7

=>góc ASC=32 độ

24 tháng 9 2018

ĐÁP ÁN: B

19 tháng 9 2019

Chọn B

Phương pháp

Góc giữa đường thẳng và mặt phẳng (nhỏ hơn 90 o   ) là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng.

 

Cách giải:

5 tháng 10 2017

Chọn B.

Phương pháp

Góc giữa đường thẳng và mặt phẳng (nhỏ hơn 90o) là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng.

Cách giải:

25 tháng 4 2022

Ta có : \(\left(SBC\right)\cap\left(ABC\right)=BC\)

Lấy H là TĐ của BC \(\Rightarrow AH\perp BC\)

SA \(\perp\left(ABC\right)\Rightarrow SA\perp AB;AC\) 

\(\Delta SAB;\Delta SAC\perp\) tại A  có : \(SB=\sqrt{SA^2+AB^2}=\sqrt{SA^2+AC^2}=SC\)

\(\Rightarrow\Delta SBC\) cân tại S . Suy ra : \(SH\perp BC\)

Suy ra : \(\left(\left(SBC\right);\left(ABC\right)\right)=\left(HA;HS\right)=\widehat{SHA}\)

Tính được : AH = \(\dfrac{a\sqrt{3}}{2}\)

\(\Delta SAH\) vuông tại A có : \(tan\widehat{SHA}=\dfrac{SA}{HA}=\dfrac{a\sqrt{3}}{2}:\dfrac{a\sqrt{3}}{2}=1\Rightarrow\widehat{SHA}=45^o\)

Vậy ... 

3 tháng 6 2019

Đáp án A

Gọi I là  trung điểm của AC. Ta có:  A I ⊥ S A C

Khi đó  S B ; S A C = B S I ⏜

Đặt S A = A B = B C = a . . Ta có  B I = a 2 2 ; S B = a 2

sin B S I ⏜ = B I S B = a 2 2 a 2 = 1 2 ⇒ B S I ⏜ = 30 °

23 tháng 2 2021

Gọi HH là trung điểm của BCBC suy ra

AH=BH=CH=1\2BC=a\2.

Ta có: SH⊥(ABC)⇒SH=√SB2−BH2=a√3\2

ˆ(SA,(ABC))=ˆ(SA,HA)=ˆSAH=α

⇒tanα=SH\AH=√3⇒α=60∘