giải hệ phương trình
\(\hept{\begin{cases}x\sqrt{x}-3x\sqrt{y}+3y\sqrt{x}=8-y\sqrt{y}\\x+\sqrt{xy}-\sqrt{x}=2\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\hept{\begin{cases}\sqrt{2x}-\sqrt{3y}=1\left(1\right)\\x+\sqrt{3y}=\sqrt{2}\left(2\right)\end{cases}}\) ( ĐK \(x,y\ge0\) )
Từ (1) và (2)\(\Leftrightarrow\sqrt{2x}+x=1+\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+\sqrt{2}+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}+\sqrt{2}+1=0\end{cases}}\)
\(\Leftrightarrow x=1\) ( Do \(x\ge0\) )
Thay \(x=1\) vào hệ (1) ta có :
\(\sqrt{2}-\sqrt{3y}=1\)
\(\Leftrightarrow\sqrt{3y}=\sqrt{2}-1\)
\(\Leftrightarrow y=\frac{3-2\sqrt{2}}{3}\) ( thỏa mãn )
P/s : E chưa học cái này nên không chắc lắm ...
\(b,\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)y=\sqrt{2}-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+y=\sqrt{2}-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\2y=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{2}\\x=\frac{\sqrt{2}-0.5}{\sqrt{2}-1}=\frac{3+\sqrt{2}}{2}\end{cases}}\)
cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~
\(\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\)
\(\Leftrightarrow\left(2x-\sqrt{y}\right)^2\left(x^2+x\sqrt{y}+y\right)=0\)
\(\hept{\begin{cases}\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\left(1\right)\\\sqrt{y+\sqrt{y}+x+2}+\sqrt{3x+1}=5\left(2\right)\end{cases}}\)
\(ĐK:y>0;\frac{-1}{3}\le x\ne0;y+\sqrt{y}+x+2\ge0\)
Đặt \(\sqrt{y}=tx\Rightarrow y=t^2x^2\)thay vào (1), ta được: \(\frac{1}{3x}+\frac{2x}{3t^2x^2}=\frac{x+tx}{2x^2+t^2x^2}\)
Rút gọn biến x ta đưa về phương trình ẩn t : \(\left(t-2\right)^2\left(t^2+t+1\right)=0\Leftrightarrow t=2\Leftrightarrow\sqrt{y}=2x\ge0\)
Thay vào (2), ta được: \(\sqrt{4x^2+3x+2}+\sqrt{3x+1}=5\)\(\Leftrightarrow\left(\sqrt{4x^2+3x+2}-3\right)+\left(\sqrt{3x+1}-2\right)=0\)\(\Leftrightarrow\frac{\left(x-1\right)\left(4x+7\right)}{\sqrt{4x^2+3x+2}+3}+\frac{3\left(x-1\right)}{\sqrt{3x+1}+2}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{4x+7}{\sqrt{4x^2+3x+2}+3}+\frac{3}{\sqrt{3x+1}+2}\right)=0\)
Dễ thấy \(\frac{4x+7}{\sqrt{4x^2+3x+2}+3}+\frac{3}{\sqrt{3x+1}+2}>0\)nên \(x-1=0\Leftrightarrow x=1\Rightarrow y=4\)
Vậy hệ phương trình có 1 nghiệm duy nhất \(\left(x,y\right)=\left(1,4\right)\)
a/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\left(1\right)\\2\sqrt{xy-y}-\sqrt{y}=-1\left(2\right)\end{cases}}\)
Điều kiện: \(\hept{\begin{cases}x\ge1\\0\le y\le1\end{cases}}\)
Xét phương trình (1) ta đễ thấy y = 0 không phải là nghiệm:
\(\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\)
\(\Leftrightarrow\sqrt{y}\left(1-\sqrt{x}\right)=\sqrt{1-y}\)
\(\Leftrightarrow1-\sqrt{x}=\frac{\sqrt{1-y}}{\sqrt{y}}\)
\(\Rightarrow1-\sqrt{x}\ge0\)
\(\Leftrightarrow x\le1\)
Kết hợp với điều kiện ta được x = 1 thê vô PT (2) ta được y = 1
b/ \(\hept{\begin{cases}\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\left(1\right)\\x-y+xy=3\left(2\right)\end{cases}}\)
Xét pt (1) ta có
\(\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\)
Đặt \(\sqrt{\frac{x}{y}}=a\left(a>0\right)\)thì pt (1) thành
\(\sqrt{2}a+\frac{\sqrt{2}}{a}=3\)
\(\Leftrightarrow a^2+1=\frac{3}{\sqrt{2}}\)
Tới đây đơn giản rồi làm tiếp nhé
1) \(x^3-3x^2y-4x^2+4y^3+16xy=16y^2\Leftrightarrow x^3-3x^2y-4x^2+4y^3+16xy-16y^2=0\)
đưa về phương trình tích : \(\left(x-2y\right)^2\left(x+y-4\right)=0\) tới đây ok chưa
3) ĐK : x \(\ge\)0 ; \(y\ge3\)\(\Rightarrow x+y>0\)
đặt \(\sqrt{x+y}=a;\sqrt{x+3}=b\)
\(\Rightarrow y-3=\left(x+y\right)-\left(x+3\right)=a^2-b^2\)
PT : \(\sqrt{x+y}+\sqrt{x+3}=\frac{1}{3}\left(y-3\right)\Leftrightarrow3\sqrt{x+y}+3\sqrt{x+3}=y-3\)
\(\Leftrightarrow3\left(a+b\right)=a^2-b^2\Leftrightarrow\left(a+b\right)\left(3-a+b\right)=0\Leftrightarrow\orbr{\begin{cases}a+b=0\\a-b=3\end{cases}}\)
Mà a + b = \(\sqrt{x+y}+\sqrt{x+3}>0\)nên loại
a - b = 3 thì \(\sqrt{x+y}-\sqrt{x+3}=3\), ta có HPT : \(\hept{\begin{cases}\sqrt{x+y}-\sqrt{x+3}=3\\\sqrt{x+y}+\sqrt{x}=x+3\end{cases}}\)
\(\Rightarrow\)\(\sqrt{x}+\sqrt{x+3}=x\Leftrightarrow\sqrt{x+3}=x-\sqrt{x}\Leftrightarrow x^2-2x\sqrt{x}-3=0\Leftrightarrow x=\left(1+\sqrt[3]{2}\right)^2\)
từ đó tìm đc y
\(\hept{\begin{cases}\frac{1}{\sqrt{x}}-\frac{\sqrt{x}}{y}=x^2+xy-2y^2\left(1\right)\\\left(\sqrt{x+3}-\sqrt{y}\right)\left(1+\sqrt{x^2+3x}\right)=3\left(2\right)\end{cases}}\)
\(ĐK:x,y>0\)
\(\left(1\right)\Leftrightarrow\frac{y-x}{y\sqrt{x}}=\left(x-y\right)\left(x+2y\right)\Leftrightarrow\left(x-y\right)\left(x+2y+\frac{1}{y\sqrt{x}}\right)=0\)
Vì x, y > 0 nên \(x+2y+\frac{1}{y\sqrt{x}}>0\)suy ra x - y = 0 hay x = y
Thay x = y vào (2), ta được: \(\left(\sqrt{x+3}-\sqrt{x}\right)\left(1+\sqrt{x^2+3x}\right)=3\)
\(\Leftrightarrow1+\sqrt{x^2+3x}=\frac{3}{\sqrt{x+3}-\sqrt{x}}\)\(\Leftrightarrow1+\sqrt{x^2+3x}=\sqrt{x+3}+\sqrt{x}\)
\(\Leftrightarrow\sqrt{x+3}.\sqrt{x}-\sqrt{x+3}-\sqrt{x}+1=0\)\(\Leftrightarrow\left(\sqrt{x+3}-1\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+3}=1\\\sqrt{x}=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\left(L\right)\\x=1\left(tmđk\right)\end{cases}}\Rightarrow x=y=1\)
Vậy hệ có một nghiệm duy nhất \(\left(x;y\right)=\left(1;1\right)\)
\(\hept{\begin{cases}\frac{1}{\sqrt{x}}-\frac{\sqrt{x}}{y}=x^2+xy-2y^2\left(1\right)\\\left(\sqrt{x+3}-\sqrt{y}\right)\left(1+\sqrt{x^2+3x}\right)=3\left(2\right)\end{cases}}\)
ĐK: \(\hept{\begin{cases}x>0\\y>0\end{cases}}\)và \(\hept{\begin{cases}x+3\ge0\\x^2+3x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\y>0\end{cases}}}\)
\(\left(1\right)\Leftrightarrow\frac{y-x}{y\sqrt{x}}=\left(x-y\right)\left(x+2y\right)\Leftrightarrow\left(x+y\right)\left(x+2y+\frac{1}{y\sqrt{x}}\right)=0\Leftrightarrow x=y\)do \(x+2y+\frac{1}{y\sqrt{x}}>0\forall x,y>0\)
Thay y=x vào pt (2) ta được
\(\left(\sqrt{x+3}-\sqrt{x}\right)\left(1+\sqrt{x^2+3x}\right)=3\Leftrightarrow1+\sqrt{x^2+3x}=\frac{3}{\sqrt{x+3}-\sqrt{x}}\)
\(\Leftrightarrow1+\sqrt{x^2+3x}=\sqrt{x+3}+\sqrt{x}\Leftrightarrow\sqrt{x+3}\cdot\sqrt{x}-\sqrt{x+3}-\sqrt{x+1}=0\)
\(\Leftrightarrow\left(\sqrt{x+1}-1\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+3}=1\\\sqrt{x}=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\left(loai\right)\\x=1\left(tm\right)\end{cases}\Rightarrow}x=y=1}\)
Vậy hệ có nghiệm duy nhất (x;y)=(1;1)
Xét phương trình (1) ta có
\(2x^2-y^2+xy-5x+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)
\(\Leftrightarrow\left(x+y\right)\left(2x-y\right)-\left(x+y\right)-2\left(2x-y\right)+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)
\(\Leftrightarrow\left(x+y-2\right)\left(2x-y-1\right)=\sqrt{y-2x+1}-\sqrt{3-3x}\)
Đặt \(\hept{\begin{cases}\sqrt{y-2x+1}=a\left(a\ge0\right)\\\sqrt{3-3x}=b\left(b\ge0\right)\end{cases}\Rightarrow a^2-b^2=x+y-2}\)thì ta có
\(PT\Leftrightarrow-a^2\left(a^2-b^2\right)=a-b\)
\(\Leftrightarrow\left(b-a\right)\left(a^3+a^2b+1\right)=0\)
Ta thấy là \(\left(a^3+a^2b+1\right)>0\)
\(\Rightarrow a=b\)
\(\Leftrightarrow y-2x+1=3-3x\)
\(\Leftrightarrow y=2-x\)
Thế vào pt (2) ta được
\(x^2-2+x-1=\sqrt{4x+2-x+5}-\sqrt{x+4-2x-2}\)
\(\Leftrightarrow x^2+x-3=\sqrt{3x+7}-\sqrt{2-x}\)
Giải tiếp sẽ có được nghiệm \(\hept{\begin{cases}x=-2\\y=4\end{cases}}\)
phương trình (1) tách như sau:
(x+y)(2x−y)−(x+y)−2(2x−y)+2=√y−2x+1−√3−3x⇔(x+y−2)(2x−y−1)=√y−2x+1−√3−3x↔{√y−2x+1=a(a≥0)√3−3x=b(b≥0)⇒a2−b2=x+y−2;−a2=2x−y−1⇒(a2−b2)(−a2)=a−b⇔(a−b)(−a3−a2b−1)=0⇔a=b(−a3−a2b−1<0;a≥0;b≥0)→a=b⇔y−2x+1=3−3x⇔y=2−x(x+y)(2x−y)−(x+y)−2(2x−y)+2=y−2x+1−3−3x⇔(x+y−2)(2x−y−1)=y−2x+1−3−3x↔{y−2x+1=a(a≥0)3−3x=b(b≥0)⇒a2−b2=x+y−2;−a2=2x−y−1⇒(a2−b2)(−a2)=a−b⇔(a−b)(−a3−a2b−1)=0⇔a=b(−a3−a2b−1<0;a≥0;b≥0)→a=b⇔y−2x+1=3−3x⇔y=2−x
thế vaò (2) là ok
k cho mình nhé xin các bạn đó cho mình 1 cái có hại gì đến các bạn đâu