K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2014

\(=cot\left(90^o-15^o\right).cot\left(90^o-35^o\right).tan45^o.tan55^o.tan75^o\)

\(=cot75^o.cot55^o.tan45^o.tan55^o.tan75^o\)

\(=\left(tan75^o.cot75^o\right).\left(tan55^o.cot55^o\right).tan45^o\)

\(=1.1.1\)

\(=1\)

10 tháng 11 2019

17 tháng 9 2023

Vì \(\alpha\in\left\{\dfrac{\pi}{2};\dfrac{3\pi}{2}\right\}\Rightarrow cos\alpha< 0\)

\(sin2\alpha=2sin\alpha cos\alpha=-\dfrac{4}{5}\Rightarrow sin\alpha cos\alpha=-\dfrac{4}{5}:2=-\dfrac{2}{5}\left(1\right)\)

\(sin^2\alpha+cos^2\alpha=1\\ \Rightarrow sin^2\alpha+cos^2\alpha+2sin\alpha cos\alpha=1+2sin\alpha cos\alpha\\ \Rightarrow\left(sin\alpha+cos\alpha\right)^2=1-\dfrac{4}{5}\)

\(\Rightarrow\left(sin\alpha+cos\alpha\right)^2=\dfrac{1}{5}\)

\(\Rightarrow sin\alpha+cos\alpha=\dfrac{1}{\sqrt{5}}\left(2\right)\)

Gọi \(x_1,x_2\) lần lượt là \(sin\alpha,cos\alpha\)

Từ \(\left(1\right),\left(2\right)\)\(\Rightarrow\left\{{}\begin{matrix}x_1x_2=-\dfrac{2}{5}\\x_1+x_2=\dfrac{1}{\sqrt{5}}\end{matrix}\right.\)

Ta có pt \(x^2-\dfrac{1}{\sqrt{5}}x-\dfrac{2}{5}=0\) hay \(x^2+\dfrac{1}{\sqrt{5}}x-\dfrac{2}{5}=0\)

Giải hệ ta được \(x_1=\dfrac{2}{\sqrt{5}};x_2=-\dfrac{1}{\sqrt{5}}\) hay \(x_1=\dfrac{1}{\sqrt{5}};x_2=-\dfrac{2}{\sqrt{5}}\)

\(\Rightarrow sin\alpha=\dfrac{2}{\sqrt{5}};cos\alpha=-\dfrac{1}{\sqrt{5}}\left(tmdk\right)\) hay \(sin\alpha=\dfrac{1}{\sqrt{5}};cos\alpha=-\dfrac{2}{\sqrt{5}}\left(tmdk\right)\)

Vậy ...

 

 

12 tháng 4 2022

a.Ta có : \(x\in\left(\pi;\dfrac{3}{2}\pi\right)\Rightarrow cosx< 0\) 

\(cosx=-\sqrt{1-sin^2x}=-\sqrt{1-0,8^2}=-0,6\) 

\(tanx=\dfrac{4}{3};cotx=\dfrac{3}{4}\)

b. cos 2x = \(cos^2x-sin^2x=0,6^2-0,8^2=-0,28\)

\(P=2.cos2x=-0,56\)

\(Q=tan\left(2x+\dfrac{\pi}{3}\right)=\dfrac{tan2x+tan\dfrac{\pi}{3}}{1-tan2x.tan\dfrac{\pi}{3}}=\dfrac{tan2x+\sqrt{3}}{1-tan2x.\sqrt{3}}\)

tan 2x = \(\dfrac{2tanx}{1-tan^2x}=\dfrac{\dfrac{2.4}{3}}{1-\left(\dfrac{4}{3}\right)^2}=\dfrac{-24}{7}\) 

\(Q=\dfrac{-\dfrac{24}{7}+\sqrt{3}}{1+\dfrac{24}{7}.\sqrt{3}}\) \(=\dfrac{-24+7\sqrt{3}}{7+24\sqrt{3}}\) 

18 tháng 2 2022

b)\(P=cos2a-cos(\dfrac{\pi}{3}-a) \\=2cos^2a-1-cos\dfrac{\pi}{3}cosa-sin\dfrac{\pi}{3}sina \\=2.(\dfrac{-2}{5})^2-1-\dfrac{1}{2}.\dfrac{-2}{5}-\dfrac{\sqrt3}{2}.\dfrac{-\sqrt{21}}{5} \\=\dfrac{-24+15\sqrt7}{50}\)

18 tháng 2 2022

a, Vì : \(\pi< a< \dfrac{3\pi}{2}\)  nên \(cos\alpha< 0\) mà \(cos^2\alpha=1-sin^2\alpha=1-\dfrac{4}{25}=\dfrac{21}{25},\)

do đó : \(cos\alpha=-\dfrac{\sqrt{21}}{5}\)

từ đó suy ra : \(tan\alpha=\dfrac{2}{\sqrt{21}},cot\alpha=\dfrac{\sqrt{21}}{2}\)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

 

a) Do MN song song với Ox nên \(\alpha  = \widehat {OMN} = \widehat {ONM} = \widehat {NOx'}\)

Mà \(\widehat {xON} = {180^o} - \widehat {NOx'} = {180^o} - \alpha \)

\( \Rightarrow \widehat {xON} = {180^o} - \alpha \)

b) Dễ thấy: Điểm N đối xứng với M qua trục Oy

\( \Rightarrow N( - {x_0};{y_0})\)

Lại có: điểm N biểu diễn góc \({180^o} - \alpha \)

 \( \Rightarrow \left\{ \begin{array}{l}\sin ({180^o} - \alpha ) = {y_N} = {y_0}\\\cos ({180^o} - \alpha ) = {x_N} =  - {x_0}\end{array} \right.\);

Mà: \(\sin \alpha  = {y_0};\;\cos \alpha  = {x_0}\)

\( \Rightarrow \left\{ \begin{array}{l}\sin ({180^o} - \alpha ) = \sin \alpha \;\\\cos ({180^o} - \alpha ) =  - \cos \alpha \end{array} \right.\)

\( \Rightarrow \left\{ \begin{array}{l}\tan ({180^o} - \alpha ) =  - \tan \alpha \;\\\cot ({180^o} - \alpha ) =  - \cot \alpha \end{array} \right.\)

a: cot x-cot 2x

\(=\dfrac{cosx}{sinx}-\dfrac{cos2x}{sin2x}\)

\(=\dfrac{2\cdot cos^2x-\left(2cos^2x-1\right)}{sin2x}=\dfrac{1}{sin2x}\)

b: \(S=cot4-cot8+cot8-cot16+...+cot4096-cot8192\)

=cot4-cot8192

NV
21 tháng 4 2021

Biểu thức này chỉ rút gọn được khi mẫu là \(1-2sin^210^0\)

21 tháng 4 2021

em sửa r giúp em với ạ