K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2023

Vì \(\alpha\in\left\{\dfrac{\pi}{2};\dfrac{3\pi}{2}\right\}\Rightarrow cos\alpha< 0\)

\(sin2\alpha=2sin\alpha cos\alpha=-\dfrac{4}{5}\Rightarrow sin\alpha cos\alpha=-\dfrac{4}{5}:2=-\dfrac{2}{5}\left(1\right)\)

\(sin^2\alpha+cos^2\alpha=1\\ \Rightarrow sin^2\alpha+cos^2\alpha+2sin\alpha cos\alpha=1+2sin\alpha cos\alpha\\ \Rightarrow\left(sin\alpha+cos\alpha\right)^2=1-\dfrac{4}{5}\)

\(\Rightarrow\left(sin\alpha+cos\alpha\right)^2=\dfrac{1}{5}\)

\(\Rightarrow sin\alpha+cos\alpha=\dfrac{1}{\sqrt{5}}\left(2\right)\)

Gọi \(x_1,x_2\) lần lượt là \(sin\alpha,cos\alpha\)

Từ \(\left(1\right),\left(2\right)\)\(\Rightarrow\left\{{}\begin{matrix}x_1x_2=-\dfrac{2}{5}\\x_1+x_2=\dfrac{1}{\sqrt{5}}\end{matrix}\right.\)

Ta có pt \(x^2-\dfrac{1}{\sqrt{5}}x-\dfrac{2}{5}=0\) hay \(x^2+\dfrac{1}{\sqrt{5}}x-\dfrac{2}{5}=0\)

Giải hệ ta được \(x_1=\dfrac{2}{\sqrt{5}};x_2=-\dfrac{1}{\sqrt{5}}\) hay \(x_1=\dfrac{1}{\sqrt{5}};x_2=-\dfrac{2}{\sqrt{5}}\)

\(\Rightarrow sin\alpha=\dfrac{2}{\sqrt{5}};cos\alpha=-\dfrac{1}{\sqrt{5}}\left(tmdk\right)\) hay \(sin\alpha=\dfrac{1}{\sqrt{5}};cos\alpha=-\dfrac{2}{\sqrt{5}}\left(tmdk\right)\)

Vậy ...

 

 

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

 

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

a) Ta thấy \(\sin t = {y_M}\) là tung độ của điểm M trên đường tròn lượng giác và c\(\cos t = {x_M}\) là hoành độ của điểm M trên đường tròn lượng giác.

Với mỗi điểm M xác định, ta chỉ có 1 tung độ và hoành độ duy nhất

Nên ta chỉ xác định duy nhất giá trị sint và cost.

b,

Nếu \(t \ne \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\), ta có: \(\tan t = \frac{{\sin t}}{{{\rm{cost}}}} = \frac{{{y_M}}}{{{x_M}}}\)( \({x_M} \ne 0\))

Nếu \(t \ne k\pi ,k \in \mathbb{Z}\), ta có: \(\cot t = \frac{{{\rm{cost}}}}{{{\rm{sint}}}} = \frac{{{x_M}}}{{{y_M}}}\)( \({y_M} \ne 0\))

Do \({x_M}\), \({y_M}\)xác định duy nhất nên \(\tan t\), \(\cot t\)xác định duy nhất.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

\(\sin \left( {45^\circ } \right) = \frac{{\sqrt 2 }}{2};\,\,\cos \left( {45^\circ } \right) = \frac{{\sqrt 2 }}{2};\,\,\tan \left( {45^\circ } \right) = \frac{1}{2};\,\,\cot \left( {45^\circ } \right) = 2\)

21 tháng 9 2023

Tham khảo:

a) Ta chia nửa đường tròn thành 6 phần bằng nhau. Khi đó điểm M là điểm biểu diễn bởi góc có số đo \(\frac{{5\pi }}{6}\)

b) Ta có:

\(\sin \left( {\frac{{5\pi }}{6}} \right) = \frac{1}{2};\cos \left( {\frac{{5\pi }}{6}} \right) = \frac{{ - \sqrt 3 }}{2};\tan \left( {\frac{{5\pi }}{6}} \right) = \frac{{ - \sqrt 3 }}{3};\cot \left( {\frac{{5\pi }}{6}} \right) = \frac{{ - 3}}{{\sqrt 3 }}\)

24 tháng 8 2023

a) \(cos638^o=cos\left(-82^o\right)=cos\left(82^o\right)=sin8^o\)

b) \(cot\dfrac{19\pi}{5}=cot\dfrac{4\pi}{5}=-cot\dfrac{\pi}{5}\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

\(a,cos\left(\dfrac{21\pi}{6}\right)=cos\left(3\pi+\dfrac{\pi}{2}\right)=cos\left(\pi+\dfrac{\pi}{2}\right)=-cos\left(\dfrac{\pi}{2}\right)=0\\ b,sin\left(\dfrac{129\pi}{4}\right)=sin\left(32\pi+\dfrac{\pi}{4}\right)=sin\left(\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\\ c,tan\left(1020^o\right)=tan\left(5\cdot180^o+120^o\right)=tan\left(120^o\right)=-\sqrt{3}\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

a, Với mọi \(x\in R\), ta có: \(-1\le sin\left(x\right)\le1\)

Do đó, không có giá trị nào của x để \(sin\left(x\right)=1,5\)

b, Những điểm biểu diễn góc lượng giác có \(sin\left(x\right)=0,5\) là M và N.

Điểm M biểu diễn cho các góc lượng giác có số đo là \(\dfrac{\pi}{6}+k2\pi,k\in Z\)

Điểm N biểu diễn cho các góc lượng giác có số đo là \(\dfrac{5\pi}{6}+k2\pi,k\in Z\)

12 tháng 12 2017

Đáp án đúng : B

19 tháng 6 2021

6.

\(cos\sqrt{x+\dfrac{\pi}{4}}\in\left[-1;1\right]\)

\(\Rightarrow-5\le5cos\sqrt{x+\dfrac{\pi}{4}}\le5\)

\(\Leftrightarrow-5\le y\le5\)

\(\Rightarrow miny=-5\Leftrightarrow cos\sqrt{x+\dfrac{\pi}{4}}=-1\Leftrightarrow\sqrt{x+\dfrac{\pi}{4}}=\pi+k2\pi\Leftrightarrow...\)

\(maxy=5\Leftrightarrow cos\sqrt{x+\dfrac{\pi}{4}}=1\Leftrightarrow\sqrt{x+\dfrac{\pi}{4}}=k2\pi\Leftrightarrow...\)