K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2016

vì giá trị tuyệt đối lớn hơn hoặc bằng 0 nên GTNN của |x+1|+|x+2| là 1 khi x=-2 hoặc -1

8 tháng 9 2016

|x + 2| = |-x - 2|   => |x + 1| + |x + 2| = |x + 1| + |-x - 2|\(\ge\)|x + 1 - x - 2| = 1

Đẳng thức xảy ra khi: (x + 1)(x + 2) = 0  => x + 1 = 0 hoặc x + 2 = 0  => x = -1 hoặc x = -2

Vậy giá trị nhỏ nhất của |x + 1| + |x + 2| là 1 khi x = -1 hoặc x = -2  

2 tháng 12 2015

áp dụng tính chất : lx| = |-x|

|x|+|y|\(\ge\)|x+y|

ta được lx-1l+ lx-2l +lx-3l+ lx-4l \(\ge\)|x-1+2-x+x-3-x+4|=4

vậy giá trị nhỏ nhất là 4

dấu = xảy ra khi tất cả cùng dấu

cậu nên mua quyển sách mình nói nêu là dân chuyên toán

2 tháng 12 2015

Thanh Nguyễn Vinh chi tiết giùm

3 tháng 12 2015

Ta có

T=/x-1/+/x-2/+/x-3/+/x-4/

=/x-1/+/2-x/+/x-3/+/4-x/

Áp dụng bất đẳng thức /A/+/B/ \(\ge\)/A+B/

=>T \(\ge\)/x-1+2-x+x-3+4-x/=/2/=2

nhớ tick mình nha

 

24 tháng 1 2017

x=1+2+3=6

31 tháng 3 2016

|x+1|+|x+2|+......+|x+2014|=2015x

Vì |x+1| \(\ge\) 0;|x+2| \(\ge\) 0;.....;|x+2014| \(\ge\) 0 (với mọi x)

=>|x+1|+|x+2|+......+|x+2014| \(\ge\) 0 (với mọi x)

Mà |x+1|+|x+2|+.....+|x+2014|=2015x

=>2015x \(\ge\) 0=>x \(\ge\) 0=>x+1>0;x+2>0;....;x+2014>0

Do đó |x+1|=x+1;|x+2|=x+2;.....;|x+2014|=x+2014

Ta có:(x+1)+(x+2)+.....+(x+2014)=2015x

=>(x+x+....+x)+(1+2+....+2014)=2015x

=>2014x + \(\frac{2014.\left(2014+1\right)}{2}\) =2015x

=>x=2029105

5 tháng 12 2015

a)x=1
b)x=1
tick cho mình nha

7 tháng 3 2019

\(|x|+|x+1|+|x+2|+|x+3|=6x\)

\(\Rightarrow x+x+1+x+2+x+3+x+4=6x\)

\(\Rightarrow4x+6=6x\)

\(\Rightarrow6x-4x=6\)

\(\Rightarrow x=3\)

vậy:\(x=3\)

23 tháng 5 2021

2450 nhé

23 tháng 5 2021

còn cái nịtッ