Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|x+1|+|x+2|+......+|x+2014|=2015x
Vì |x+1| \(\ge\) 0;|x+2| \(\ge\) 0;.....;|x+2014| \(\ge\) 0 (với mọi x)
=>|x+1|+|x+2|+......+|x+2014| \(\ge\) 0 (với mọi x)
Mà |x+1|+|x+2|+.....+|x+2014|=2015x
=>2015x \(\ge\) 0=>x \(\ge\) 0=>x+1>0;x+2>0;....;x+2014>0
Do đó |x+1|=x+1;|x+2|=x+2;.....;|x+2014|=x+2014
Ta có:(x+1)+(x+2)+.....+(x+2014)=2015x
=>(x+x+....+x)+(1+2+....+2014)=2015x
=>2014x + \(\frac{2014.\left(2014+1\right)}{2}\) =2015x
=>x=2029105
\(|x|+|x+1|+|x+2|+|x+3|=6x\)
\(\Rightarrow x+x+1+x+2+x+3+x+4=6x\)
\(\Rightarrow4x+6=6x\)
\(\Rightarrow6x-4x=6\)
\(\Rightarrow x=3\)
vậy:\(x=3\)
\(\left|x+1\right|+\left|y+2\right|+\left|x-y+z\right|=0\)
\(\Rightarrow\hept{\begin{cases}x+1=0\\y+2=0\\x-y+z=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=-2\\-1+2+z=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-1\\y=-2\\z=-1\end{cases}}}\)
vì giá trị tuyệt đối lớn hơn hoặc bằng 0 nên GTNN của |x+1|+|x+2| là 1 khi x=-2 hoặc -1
|x + 2| = |-x - 2| => |x + 1| + |x + 2| = |x + 1| + |-x - 2|\(\ge\)|x + 1 - x - 2| = 1
Đẳng thức xảy ra khi: (x + 1)(x + 2) = 0 => x + 1 = 0 hoặc x + 2 = 0 => x = -1 hoặc x = -2
Vậy giá trị nhỏ nhất của |x + 1| + |x + 2| là 1 khi x = -1 hoặc x = -2