Tính giá trị các biểu thức sau với\(\left[a\right]=1,5\); \(b=-0,75.\)
\(M=a+2ab-b\)
\(N=a\div2-2\div b\)
\(P=\left(-2\right)\div a^2-b\times\frac{2}{3}\)
[a] là giá trị tuyệt đối.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(|a| = 1,5 \) \(\Rightarrow a=1,5\) hoặc \(a=−1,5\)
* Với a = 1,5 và b = −0,75 ta có :
M = 0 ; N = \(3\dfrac{5}{12}\) ; \(P=\dfrac{7}{18}\)
* Với a = 1,5 và b = −0,75 ta có :
\(M=1\dfrac{1}{2};N=1\dfrac{11}{12};P=\dfrac{7}{18}\)
a) \(25^{\dfrac{1}{2}}=5\)
b) \(\left(\dfrac{36}{49}\right)^{-\dfrac{1}{2}}=\dfrac{7}{6}\)
c) \(100^{1,5}=1000\)
A =\(1,5+\left|2-x\right|\)
Vì \(\left|2-x\right|>=0\)
=> A =\(1,5+\left|2-x\right|>=1,5\)
Dấu ( = ) xảy ra khi \(\left|2-x\right|=0\)
\(2-x=0\)
\(x=0\)
Vậy giá trị nhỏ nhất của A =\(1,5+\left|2-x\right|\)là 1,5 khi x = 2
\(A=1,5+\left|2-x\right|\ge1,5\)
\(MinA=1,5\Leftrightarrow2-x=0\)
\(\Rightarrow x=2\)
\(M=\sqrt{\left(\frac{1}{25}\right)^{\left(-\frac{3}{2}\right)}-\left(\frac{1}{8}\right)^{\left(-\frac{2}{3}\right)}}=\sqrt{\left(5^{-2}\right)^{-\frac{3}{2}}-\left(2^{-3}\right)^{-\frac{2}{3}}}=\sqrt{5^3-2^2}=\sqrt{121}=11\)
Ta có:
\(a+b+c-abc=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+c\left(a+b\right)\right)-abc\)
\(=\left(a+b\right)ab+\left(a+b\right)^2c+abc+c^2\left(a+b\right)-abc\)
\(=\left(a+b\right)\left(ab+c^2+c\left(a+b\right)\right)\)
\(=\left(a+b\right)\left(ab+ac+c^2+bc\right)\)
\(=\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)
\(=\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
Đồng thời:
\(a^2+1=a^2+ab+bc+ac=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)
Tương tự:
\(b^2+1=\left(a+b\right)\left(b+c\right)\)
\(c^2+1=\left(a+c\right)\left(b+c\right)\)
Từ đó:
\(P=\dfrac{\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2}{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)}\)
\(=\dfrac{\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2}{\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2}=1\)
a) Ta có: \(\left|x\right|\ge0\left(\forall x\in Z\right)\)
\(\Rightarrow A=\left|x\right|+\frac{6}{13}\ge\frac{6}{13}\)
Dấu "=" xảy ra "=" |x| = 0 <=> x = 0
Vậy Amin = 6/13 khi và chỉ khi x = 0
b) Ta có: \(\left|x+2,8\right|\ge0\left(\forall x\in Z\right)\)
\(\Rightarrow B=\left|x+2,8\right|-7,9=\left|x+2,8\right|+\left(-7,9\right)\ge-7,9\)
Dấu "=" xảy ra <=> |x+2,8| = 0 <=> x + 2,8 = 0 <=> x = -2,8
Vậy Bmin = -7,9 khi và chỉ khi x = -2,8
c) Ta có: \(\left|x+1,5\right|\ge0\left(\forall x\in Z\right)\)
\(\Rightarrow C=\left|x+1,5\right|-5,7=\left|x+1,5\right|+\left(-5,7\right)\ge-5,7\)
Dấu "=" xảy ra <=> |x+1,5| = 0 <=> x + 1,5 = 0 <=> x = -1,5
Vậy Cmin = -5,7 khi và chỉ khi x = -1,5
Tìm GTNN
Ta có: A = |x - 1| + |x - 4|
=> A = |x - 1| + |4 - x| \(\ge\)|x - 1 + 4 - x| = |3| = 3
=> A \(\ge\)3
Dấu "=" xảy ra <=> (x - 1)(x - 4) \(\ge\)0
<=> \(1\le x\le4\)
Vậy Min A = 3 <=> \(1\le x\le4\)
Tìm GTLN
Ta có: -|x + 2| \(\le\)0 \(\forall\)x
hay A \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2
Vậy Max A = 0 <=> x = -2