K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2016

x=2 chắc chắn 100%

1 tháng 8 2019

1.
a) \(\frac{11}{2}-\frac{2}{3}:\left|2x+-\frac{3}{2}\right|=3\)
               \(-\frac{2}{3}:\left|2x+-\frac{3}{2}\right|=3-\frac{11}{2}\)
               \(-\frac{2}{3}:\left|2x+-\frac{3}{2}\right|=-\frac{5}{2}\)
                          \(\left|2x+-\frac{3}{2}\right|=-\frac{2}{3}:\left(-\frac{5}{2}\right)\)
                          \(\left|2x+-\frac{3}{2}\right|=\frac{4}{15}\)
\(\Rightarrow\left|2x+-\frac{3}{2}\right|\in\text{{}\frac{4}{15};-\frac{4}{15}\)}
Nếu, \(2x+\left(-\frac{3}{2}\right)=\frac{4}{15}\)
                               \(2x=\frac{53}{30}\)
                                  \(x=\frac{53}{60}\)
Nếu, \(2x+\left(-\frac{3}{2}\right)=-\frac{4}{15}\)
                               \(2x=\frac{37}{30}\)
                                  \(x=\frac{37}{60}\)
Vậy \(x\in\text{{}\frac{53}{60};\frac{37}{60}\)}
b) \(\left|\frac{2}{7}x-\frac{1}{5}\right|-\left|-x+\frac{4}{9}\right|=0\)
    \(\left|\frac{2}{7}x-\frac{1}{5}\right|=\left|-x+\frac{4}{9}\right|\)
\(\Rightarrow\left|\frac{2}{7}x-\frac{1}{5}\right|\in\text{{}-x+\frac{4}{9};-\left(x+\frac{4}{9}\right)\)}
Nếu, \(\frac{2}{7}x-\frac{1}{5}=-x+\frac{4}{9}\)
                          \(x=\frac{203}{405}\)
Nếu, \(\frac{2}{7}x-\frac{1}{5}=-\left(-x+\frac{4}{9}\right)\)
         \(\frac{2}{7}x-\frac{1}{5}=x-\frac{4}{9}\)
            \(\frac{2}{7}x-x=\frac{1}{5}-\frac{4}{9}\)
                 \(-\frac{5}{7}x=-\frac{11}{45}\)
                           \(x=\frac{77}{225}\)
Vậy \(x\in\text{{}\frac{203}{405};\frac{77}{225}\)}

17 tháng 2 2021

\(A=\left(\frac{x^2-16}{x-4}-1\right):\left(\frac{x-2}{x-3}+\frac{x+3}{x+1}+\frac{x+2-x^2}{x^2-2x-3}\right)\)ĐK : \(x\ne3;-1;4\)

\(=\left(\frac{\left(x-4\right)\left(x+4\right)}{x-4}-1\right):\left(\frac{\left(x-2\right)\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}+\frac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}+\frac{x+2-x^2}{\left(x-3\right)\left(x+1\right)}\right)\)

\(=\left(x-3\right):\left(\frac{x^2-x-2+x^2-9+x+2-x^2}{\left(x-3\right)\left(x+1\right)}\right)=\left(x-3\right):\left(\frac{x^2-9}{\left(x-3\right)\left(x-1\right)}\right)\)thơm thế :))

\(=\left(x-3\right):\left(\frac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x-1\right)}\right)=\left(x-3\right).\frac{x-1}{x+3}=\frac{\left(x-3\right)\left(x-1\right)}{x+3}\)

17 tháng 2 2021

1) đk: \(x\ne\left\{-1;3;4\right\}\)

Ta có:

\(A=\left(\frac{x^2-16}{x-4}-1\right)\div\left(\frac{x-2}{x-3}+\frac{x+3}{x+1}+\frac{x+2-x^2}{x^2-2x-3}\right)\)

\(A=\left[\frac{\left(x-4\right)\left(x+4\right)}{x-4}-1\right]\div\frac{\left(x-2\right)\left(x+1\right)+\left(x+3\right)\left(x-3\right)+x+2-x^2}{\left(x+1\right)\left(x-3\right)}\)

\(A=\left(x+4-1\right)\div\frac{x^2-x-2+x^2-9-x^2+x+2}{\left(x+1\right)\left(x-3\right)}\)

\(A=\left(x+3\right)\div\frac{x^2-9}{\left(x+1\right)\left(x-3\right)}\)

\(A=\left(x+3\right)\cdot\frac{\left(x+1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)

\(A=x+1\)

2) Ta có: \(\frac{A}{x^2+x+1}=\frac{x+1}{x^2+x+1}\)

Để \(\frac{A}{x^2+x+1}\) nguyên thì \(\left(x+1\right)⋮\left(x^2+x+1\right)\Leftrightarrow\left(x+1\right)^2⋮\left(x^2+x+1\right)\)

\(\Rightarrow\left(x+1\right)^2-\left(x^2+x+1\right)⋮\left(x^2+x+1\right)\)

\(\Rightarrow x⋮\left(x^2+x+1\right)\Rightarrow1⋮x^2+x+1\)

\(\Rightarrow x^2+x+1\in\left\{-1;1\right\}\Rightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Rightarrow\orbr{\begin{cases}x=-1\left(ktm\right)\\x=0\left(tm\right)\end{cases}}\)

Vậy x = 0

13 tháng 7 2019

a) \(\frac{x-1}{6}=\frac{2x+3}{7}\)

\(\Leftrightarrow7\left(x-1\right)=6\left(2x+3\right)\)

\(\Leftrightarrow7x-7=12x+18\)

\(\Leftrightarrow5x+18=-7\)

\(\Leftrightarrow5x=-25\)

\(\Leftrightarrow x=-5\)

13 tháng 7 2019

b) \(\left(2x^2-\frac{1}{2}x\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow x\left(2x-\frac{1}{2}\right)\left(x^2+1\right)=0\)

Vì \(x^2+1>0\)nên \(\orbr{\begin{cases}x=0\\2x-\frac{1}{2}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}\)

10 tháng 1 2019

a) ĐKXĐ : \(x\ne0\)

\(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\left(1+\frac{2}{5}+\frac{2}{3}\right)=\frac{-5}{4}\)

\(\left(\frac{-9x}{3x}+\frac{9}{3x}-\frac{x}{3x}\right):\left(\frac{15}{15}+\frac{6}{15}+\frac{10}{15}\right)=\frac{-5}{4}\)

\(\frac{-9x+9-x}{3x}:\frac{15+6+10}{15}=\frac{-5}{4}\)

\(\frac{-10x+9}{3x}:\frac{31}{15}=\frac{-5}{4}\)

\(\frac{-10x+9}{3x}=\frac{-31}{12}\)

\(\Leftrightarrow12\left(-10x+9\right)=-31\cdot3x\)

\(\Leftrightarrow-120x+108=-93x\)

\(\Leftrightarrow-120x+93x=-108\)

\(\Leftrightarrow-27x=-108\)

\(\Leftrightarrow x=4\)

10 tháng 1 2019

b) ĐKXĐ : \(x\ne0\)

\(\frac{-3x}{4}\cdot\left(\frac{1}{x}+\frac{2}{7}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\frac{-3x}{4}=0\\\frac{1}{x}+\frac{2}{7}=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\left(loai\right)\\\frac{-2}{-2x}=\frac{-2}{7}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\left(loai\right)\\x=\frac{-7}{2}\end{cases}}\)

Vậy.....

c) phân tích ra rồi làm thôi e :)) a bận rồi 

2 tháng 11 2019

Bài 1:

\(4.\left(\frac{-1}{2}\right)^2-2.\left(\frac{-1}{2}\right)^2+3.\left(\frac{-1}{2}\right)+1\)

\(=4.\frac{1}{4}-2.\frac{1}{4}+3.\left(\frac{-1}{2}\right)+1\)

\(=1-\frac{1}{2}-\frac{3}{2}+1\)

\(=0\)

2 tháng 11 2019

Bài 2: 

a) \(\frac{37-x}{x+13}=\frac{3}{7}\)

\(\Rightarrow7\left(37-x\right)=3\left(x+13\right)\)

\(\Rightarrow259-7x=3x+39\)

\(\Rightarrow259-39=3x+7x\)

\(\Rightarrow220=10x\)

\(\Rightarrow x=22\)

d) \(\frac{3^2.3^8}{27^3}=3^x\)

\(\Rightarrow\frac{3^{10}}{\left(3^3\right)^3}=3^x\)

\(\frac{\Rightarrow3^{10}}{3^9}=3^x\)

\(\Rightarrow3=3^x\)

\(\Rightarrow x=1\)

Hok tốt nha^^

AH
Akai Haruma
Giáo viên
20 tháng 4 2021

d,

\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)

e,

\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)

\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)

\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)

Vậy không tồn tại $x$ thỏa mãn đề bài.

f, 

\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)

\(\Leftrightarrow 6x-3=10+6x\)

\(\Leftrightarrow 13=0\) (vô lý)

Vậy không tồn tại $x$ thỏa mãn đề bài.

AH
Akai Haruma
Giáo viên
20 tháng 4 2021

a,

$0-|x+1|=5$

$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)

Do đó không tồn tại $x$ thỏa mãn điều kiện đề.

b,

\(2-|\frac{3}{4}-x|=\frac{7}{12}\)

\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)

\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)

c, 

\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)

\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)

\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)

\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)