K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2016

xin lỗi nha 

mình mới học lớp 6 

nên ko biết làm bài này!

6 tháng 9 2016

bài này cũng trong đề lớp 6 đây 

26 tháng 7 2018

Mình ko bít mình làm. Đúng hay ko nữa

I don't now

or no I don't

..................

sorry

3 tháng 6 2022

ko tận cùng là 2;3;7;8
ko tận cùng là 1 vì 11 chia 4 dư 3
ko tận cùng là 5 vì chia 55 chia 4 dư 3
ko tận cùng là 6 vì 66 chia 4 dư 2
ko tận cùng là 9 vì 99 chia 4 dư 3
vậy số có dạng là a000,a444
với số có dạng là a000 thì a chỉ có thể là 1;3;4;6;7;9
với số có dạng là a444 thì a chỉ có thể là 1;3;4;6;7;9
thử đi, có 6TH thôi=))

3 tháng 6 2022

2. a và b đồng dư 0;1 mod 4
nên a-b đồng dư 0;1;3 mod 4
mà 2014 đồng dư 2 mod 4
nên ko tồn tại a;b

29 tháng 6 2016

Với mọi n >1 ta đều có: \(\sqrt{n+1}>\sqrt{n}>\sqrt{n-1}>0\Rightarrow\sqrt{n+1}+\sqrt{n}>2\sqrt{n}>\sqrt{n}+\sqrt{n-1}>0\)

\(\Rightarrow\frac{1}{\sqrt{n+1}+\sqrt{n}}< \frac{1}{2\sqrt{n}}< \frac{1}{\sqrt{n}+\sqrt{n-1}}\)\(\Rightarrow\frac{\left(n+1\right)-n}{\sqrt{n+1}+\sqrt{n}}< \frac{1}{2\sqrt{n}}< \frac{n-\left(n-1\right)}{\sqrt{n}+\sqrt{n-1}}\)

\(\Rightarrow\sqrt{n+1}-\sqrt{n}< \frac{1}{2\sqrt{n}}< \sqrt{n}-\sqrt{n-1}\)

\(\Rightarrow2\sqrt{n+1}-2\sqrt{n}< \frac{1}{\sqrt{n}}< 2\sqrt{n}-2\sqrt{n-1}\)đpcm.

Từ đó ta có:

\(2\sqrt{2}-2< \frac{1}{\sqrt{1}}=1;\)

\(2\sqrt{3}-2\sqrt{2}< \frac{1}{\sqrt{2}}< 2\sqrt{2}-2;\)

\(2\sqrt{4}-2\sqrt{3}< \frac{1}{\sqrt{3}}< 2\sqrt{3}-2\sqrt{2};\)

...

\(2\sqrt{1006010}-2\sqrt{1006009}< \frac{1}{\sqrt{1006009}}< 2\sqrt{1006009}-2\sqrt{1006008};\)

Cộng từng vế ta được:

\(2\sqrt{1006009}-2< 2\sqrt{1006010}-2< 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{1006009}}< 2\cdot1003-1\)

\(2004< 2\sqrt{1006010}-2< 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{1006009}}< 2005\)đpcm

Một bất đẳng thức HAY và rất chặt! 1 tổng các phân thức của căn thức bị chặn bởi 2 số tự nhiên liên tiếp!

20 tháng 1 2017

giúp mình nha

uses crt;
var n,i:longint;
t:real;
begin
clrscr;
write('n='); readln(n);
if (1<=n) and (n<=10000) then
begin
t:=0;
for i:=1 to n do
t:=t+(1/(sqr(i)));
writeln('T=',t:4:2);
end
else writeln('vui long nhap lai n');
readln;
end.