Tìm y, biết
y x 2 + y/2 =10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y x 2/5 =8/21
y= 8/21:2/5
y= 20/21
12/7: y =7/5-2/5
12/7:y = 1
y = 12/7 :1
y= 12/7
\(y\times\dfrac{2}{5}=\dfrac{8}{21}\\ y=\dfrac{8}{21}:\dfrac{2}{5}\\ y=\dfrac{20}{21}\\ \dfrac{12}{7}:y+\dfrac{2}{5}=\dfrac{7}{5}\\ \dfrac{12}{7}:y=\dfrac{7}{5}-\dfrac{2}{5}\\ \dfrac{12}{7}:y=1\\ y=\dfrac{12}{7}:1=\dfrac{12}{7}\)
Dựa vào phản ứng tỉ lệ mol 1: 2 => Y 2 chức và Z đơn chức.
Mà Y bị CuO OXH => Y là ancol 2 chức và T là andehit 2 chức
Do số C của X là 4 ; mà Z ít nhất phải có 1 C nên Y chỉ có thể là C2H4(OH)2
=> T là (CHO)2 => MT = 58
=>B
\(\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}=\frac{y^2+x^2+y^2-x^2}{3+5}=\frac{2y^2}{8}=\frac{y^2}{4}\)
\(\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}=\frac{\left(x^2+y^2\right)-\left(y^2-x^2\right)}{5-3}=\frac{2x^2}{2}=x^2\)
\(\frac{y^2}{4}=x^2\Rightarrow\frac{y^{10}}{1024}=\frac{x^{10}}{1}\Rightarrow x^{20}=\frac{x^{10}.y^{10}}{1024}=\frac{1024}{1024}=1\)
=>x=-1;1
xét x=-1=>y2=4=>y=-2;2
xét x=1=>y2=4=>y=-2;2
Vậy (x;y)=(-1;-2);(-1;2);(1;-2);(1;2)
\(\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}=\frac{y^2+x^2+y^2-x^2}{3+5}=\frac{2y^2}{8}=\frac{y^2}{4}\)
\(\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}=\frac{\left(x^2+y^2\right)-\left(y^2-x^2\right)}{5-3}=\frac{2x^2}{2}=x^2\)
\(\frac{y^2}{4}=x^2\Rightarrow\frac{y^{10}}{1024}=\frac{x^{10}}{1}\Rightarrow x^{20}=\frac{x^{10}.y^{10}}{1024}=\frac{1024}{1024}=1\)
=>x=-1;1
xét x=-1=>y2=4=>y=-2;2
xét x=1=>y2=4=>y=-2;2
Vậy (x;y)=(-1;-2);(-1;2);(1;-2);(1;2)
Áp dụng tính chất của dãy tỉ số bằng nhau có: \(\frac{y^2-x^2}{3}=\frac{x^2+y^2}{5}=\frac{\left(y^2-x^2\right)+\left(x^2+y^2\right)}{3+5}=\frac{\left(y^2-x^2\right)-\left(x^2-y^2\right)}{3-5}\)
=> \(\frac{2y^2}{8}=\frac{-2x^2}{-2}\Rightarrow\frac{y^2}{4}=x^2\) => y2 = 4x2
Ta có x10.y10 = x10. (4x2)5 = 1024.x20 = 1024 => x20 = 1 => x =1 hoặc x = -1
=> y2 = 4 => y = 2 hoặc y = -2
Vậy ...
A) \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{2.4}=\frac{y}{3.4}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{3.4}=\frac{z}{3.5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ 1 và 2
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)s
Áp dụng tính chất dãy tỉ số bằng nhau
=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\frac{x}{8}=2\Rightarrow x=16\)
\(\frac{y}{12}=2\Rightarrow y=24\)
\(\frac{z}{15}=2\Rightarrow z=30\)
B) Đặt \(\frac{x}{2}=\frac{y}{5}=k\)
=> \(\hept{\begin{cases}x=2k\\y=5k\end{cases}}\)
xy = 10
=> 2k . 5k = 10
=> 10 . k2 = 10
=> k2 = 1
=> \(\hept{\begin{cases}k=-1\\k=1\end{cases}}\)
=> Với \(\hept{\begin{cases}k=-1\Rightarrow\hept{\begin{cases}x=-2\\y=-5\end{cases}}\\k=1\Rightarrow\hept{\begin{cases}x=2\\y=5\hept{\begin{cases}\\\end{cases}}\end{cases}}\end{cases}}\)
yx2+y/2=10
yx2+yx2=10
yx(2+2)=10
yx4=10
y=10:4
y=5/2