Bài 1 :Cho hình bình hành ABCD. E,F thứ tự là trung điểm của AB và CD.
a, AF song song CD
b, M,N thứ tự là giao điểm của BD vs AF, CE
Bài 2: Cho hình bình hành ABCD. Trên đg chéo BD lấy E,F sao cho DE =BF.CMR: AF song song CE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Xét ΔADE và ΔCBF có:
AD=BC(gt)
\(\widehat{ADE}=\widehat{CBF}\) (soletrong do AD//BC)
DE=BF(gt)
=>ΔADE=ΔCBF(c.g.c)
=>AE=CF (1)
Xét ΔABF và ΔCDE có:
BF=DE(gt)
\(\widehat{ABF}=\widehat{CDE}\) (soletrong do AB..CD)
AB=CD(gt)
=>ΔABF=ΔCDE(c.g.c)
=>AF=CE (2)
Từ (1)(2) suy ra: AFCE là hbh
=>AF//CE
XIN LỖI NẾU LM PHIỀN CÁC BN MK ĐANG CẦN GẤP GIẢI GIÙM NHÉ
a: Xét tứ giác EBFD có
EB//FD
EB=FD
Do đó: EBFD là hình bình hành
a) Ta có: AB=CD(ABCD là hình bình hành)
mà \(AE=EB=\dfrac{AB}{2}\)(E là trung điểm của AB)
và \(DF=FC=\dfrac{DC}{2}\)(F là trung điểm của DC)
nên AE=EB=DF=FC
Xét tứ giác AECF có
AE//CF(ABCD là hình bình hành)
AE=CF(cmt)
Do đó: AECF là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Xét ΔABM có
E là trung điểm của AB(gt)
EN//AM(cmt)
Do đó: N là trung điểm của BM(Định lí 1 về đường trung bình của tam giác)
Suy ra: BN=NM(1)
Xét ΔDNC có
F là trung điểm của DC(gt)
FM//NC(cmt)
Do đó: M là trung điểm của DN(Định lí 1 về đường trung bình của tam giác)
Suy ra: DM=MN(2)
Từ (1) và (2) suy ra DM=MN=NB(Đpcm)
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
Suy ra: AF//CE
Bạn tham khảo bài này nhé :
a) Tam giác ADC = tam giác CBA
=> Góc ACB = Góc CAD
=> tam giác AED = tam giác CFB
=>Góc BFC = Góc DEA
=> DN // BM ( vì BFC và DEA ở vị trí so le ngoài)
=> EN // BM ( E thuộc DN)
Tam giác AMB có EA = EF (gt) ; EN // BM (c/m trên)
=> EN là đường trung bình
=> N là trung điểm của AB
Tương tự => FM là đường trung bình tam giác ECD
=> M là trung điểm của CD
a: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
Bài 1:
Kẻ đường chéo AC
có E,F,G,H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA
suy ra EF là đường trung bình của tam giác ABC nên EF//=1/2AC (1)
GH là đường trung bình của tam giác ADC nên GH//=1/2AC (2)
Từ (1) và (2) suy ra EF//=GH nên EFGH là hình bình hành
Vì có hai cạnh đối song song và bằng nhau
Bài 1
a)Ta có:AE=AB/2=AD=CD/2=DF
Tứ giác AEFD có: AE//DF, AE=DF
AEFD là hbh
mà AE=AD nên AEFD là hình thoi
CMTT ta có: BEFC là hình thoi
Ta có: AE=AB/2=AD=BC=CD/2=CF
Tứ giác AECF có: AE//CF, AE=CF
AECF là hbh
b)Ta có: AEFD là hình thoi nên: góc AED=FED
mà : AED=DEF
FED=EDC
CMTT ta có:FEC=ECD
Mà FED+DEC+FEC+ECD=180
2ˆFED+2ˆFEC=180o2FED^+2FEC^=180o
2DEC=180.2DEC=180
DEC=90o
Tứ giác EMFN có: EM//FN, EN//FM và EMFN là hbh
mà MEN=90o nên EMFN là hcn