Cho biểu thức: \(A=\left(\frac{6x+4}{3\sqrt{3x^3}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^3}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Rút gọn biểu thức A; b) Tìm \(x\in Z\)để \(A\in Z\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(3x+2\sqrt{3x}+4=\left(\sqrt{3x}+1\right)^2+3>0;1+\sqrt{3x}>0,\forall x\ge0\), nên đk để A có nghĩa là
\(\left(\sqrt{3x}\right)^3-8-\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)\ne0;x\ge0\Leftrightarrow\sqrt{3x}\ne2\Leftrightarrow0\le x\ne\frac{4}{3}\)
A=\(\left(\frac{6x+4}{\left(\sqrt{3x}\right)^3-2^3}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right)\left(\frac{1+\left(\sqrt{3x}\right)^3}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
\(=\left(\frac{6x+4-\left(\sqrt{3x}-2\right)\sqrt{3x}}{\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)}\right)\left(3x-\sqrt{3x}+1-\sqrt{3x}\right)\)
\(=\left(\frac{3x+4+2\sqrt{3x}}{\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)}\right)\left(3x-2\sqrt{3x}+1\right)\)
\(=\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}\left(0\le x\ne\frac{4}{3}\right)\)
b) \(A=\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}=\frac{\left(\sqrt{3x}-2\right)^2+2\left(\sqrt{3x}-2\right)+1}{\sqrt{3x}-2}=\sqrt{3x}+\frac{1}{\sqrt{3x}-2}\)
Với \(x\ge0\), để A là số nguyên thì \(\sqrt{3x}-2=\pm1\Leftrightarrow\orbr{\begin{cases}\sqrt{3x}=3\\\sqrt{3x}=1\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=9\\3x=1\end{cases}\Leftrightarrow}x=3}\) (vì \(x\in Z;x\ge0\))
Khi đó A=4
mk nghĩ bạn chép sai đề hình như đề bài phải là \(A=\sqrt[3]{\frac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}}{2}}+\sqrt[3]{\frac{x^3-3x-\left(x^2-1\right)\sqrt{x^2-4}}{2}}\)
ta xét \(A^3=\left(\sqrt[3]{\frac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}}{2}}+\sqrt[3]{\frac{x^3-3x-\left(x^2-1\right)\sqrt{x^2-4}}{2}}\right)^3\)
<=> \(A^3=x^3-3x+3A\cdot\sqrt[3]{\frac{4}{4}}\)
<=> \(A^3=x^3-3x+3A\)
<=> \(A^3-3A-x^3+3x=0\)
<=>\(\left(A^3-x^3\right)-3A+3x=0\)
<=> \(\left(A-x\right)\left(A^2+Ax+x^2\right)-3\left(A-x\right)=0\)
<=> \(\left(A-x\right)\left(A^2+Ax+x^2-3\right)=0\)
<=> \(\orbr{\begin{cases}A=x\\A^2+Ax+x^2-3=0\end{cases}}\)(vô lí )
vậy \(A=x\)
Câu a kia đề là \(3\sqrt{3x^3-8}\) hay \(3\sqrt{3x^3}-8\)
b/ \(x=\sqrt[3]{5\sqrt{6}+5}-\sqrt[3]{5\sqrt{6}-5}\)
\(\Rightarrow x^3=10-3x\left(\sqrt[3]{\left(5\sqrt{6}+5\right)\left(5\sqrt{6}-5\right)}\right)=10-15x\)
\(\Leftrightarrow x^3+15x=10\)
a: \(A=\left(\dfrac{6x+4-3x+2\sqrt{3x}}{\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)}\right)\cdot\left(3x-\sqrt{3x}+1-\sqrt{3x}\right)\)
\(=\left(\dfrac{3x+2\sqrt{3x}+4}{\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)}\right)\cdot\left(3x-2\sqrt{3x}+1\right)\)
\(=\sqrt{3x}-1\)
b: Để A là số nguyên thì căn 3x là số nguyên
=>3x=k2(k∈N)
hay \(x=\dfrac{k^2}{3}\)
khó !!!
Cứ quy đồng là ra à. Làm biếng trình bày quá. Nên cho bạn đáp số thôi nhé
a/ \(\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}\)
b/ x = 3 và A = 4