tìm x để các căn thức sau xác định
\(\sqrt{2-x}-\sqrt{x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\sqrt{\dfrac{1}{2-x}}\) xác định khi:
\(2-x>0\)
\(\Leftrightarrow-x>-2\)
\(\Leftrightarrow x< 2\)
Để căn thức xác định thì \(x^2+4\ge0\)
mà ta có : \(x^2+4\ge4>0\forall x\)
=> Căn thức xác định với mọi số thực x
Ta thấy x2+4 luôn lớn hơn 0 với mọi x
Suy ra căn thức đã cho luôn xác định với mọi x thuộc R
\(\frac{5}{x-2}\ge0\Rightarrow x-2>0\Rightarrow x>2..\)
\(\Leftrightarrow\frac{5}{x-2}\ge0\Leftrightarrow x-2\ge0\Leftrightarrow x\ge2\)
để \(\sqrt{\frac{5}{x-2}}\) xác định \(\Leftrightarrow x-2\ge0\) \(\Leftrightarrow x\ge2\)
mk ko biết đúng hay sai nha
\(\sqrt{\frac{x}{3}-8}\)xác định <=> \(\frac{x}{3}-8\)\(\ge0\)\(\Leftrightarrow\frac{x}{3}\ge8\)\(\Leftrightarrow x\ge24\)
vậy căn thức xđ \(\Leftrightarrow x\ge24\)
Căn thức đã cho xác định khi:
2-x>=0 và x>=0
<=>x<=2 và x>=0
<=>0<=x<=2
Vậy với 0<=x<=2 thì căn thức đã cho xác định.