Tim 3 so tu nhien chan lien tiep co tich la 3010
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 34 và 35
b) 12, 13 và 14
c) 14, 16 và 18
d) 63, 65 và 67
e) 50
1. Gọi ba số tự nhiên liên tiếp đó là a, a+1 , a+2 ( a thuộc N )
Theo đề bài ta có : ( a + 1 )( a + 2 ) - a( a + 1 ) = 25
<=> a2 + 3a + 2 - a2 - a = 25
<=> 2a = 25
<=> a = 25/2 ( đến đây => sai đề :)) )
2. Gọi ba số tự nhiên chẵn liên tiếp đó là 2a, 2a+2, 2a+4 ( a thuộc N )
Theo đề bài ta có : ( 2a + 2 )2 - 2a( 2a + 4 ) = 1/3.2a
<=> 4a2 + 8a + 4 - 4a2 - 8a = 2/3a
<=> 4 = 2/3a
<=> a = 6
=> 2a = 12
2a + 2 = 14
2a + 4 = 16
Vậy ba số cần tìm là 12 ; 14 ; 16
a)
Gọi x - 1 là số thứ nhất ( ĐK : \(x-1\in N\) )
x là số thứ hai
x + 1 là số thứ ba
Theo đề , ta có :
\(x\left(x-1\right)+25=x\left(x+1\right)\)
\(x^2-x+25=x^2+x\)
\(2x=-25\)
\(x=-\frac{25}{2}\) ( loại vì x \(\notin\) N )
b)
Gọi x - 2 là số thứ nhất ( ĐK : \(x-2\in N;x-2⋮2\) )
x là số thứ hai
x + 2 là số thứ ba
Theo đề ; ta có :
\(x^2-\left(x+2\right)\left(x-2\right)=\frac{1}{3}\left(x-2\right)\)
\(x^2-\left(x^2-2^2\right)=\frac{1}{3}\left(x-2\right)\)
\(x^2-x^2+4=\frac{1}{3}\left(x-2\right)\)
\(\frac{1}{3}\left(x-2\right)=4\)
\(x-2=12\)
\(x=14\) ( nhận )
Vậy số thứ hai là 14
Số thứ nhất là 14 - 2 = 12
Số thứ ba là 14 + 2 = 16
Ta có: 4032=2.2.2.2.2.2.3.3.7
=(2.7).(2.2.2.2).(2.3.3)
=14.16.18
Vậy số bé nhất trong 3 số tự nhiên chẵn liên tiếp có tích bằng 4032 là 14.
Gọi 4 số tự nhiên liên tiếp lần lượt là n ; n + 1 ; n + 2 ; n + 3
Ta có:
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=24\)
\(\Rightarrow n\left(n+1\right)\left(n+2\right)\left(n+3\right)-24=0\)
\(\Rightarrow\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]-24=0\)
\(\Rightarrow\left(n^2+3n\right)\left(n^2+3n+2\right)-24=0\)
Đặt \(n^2+3n+1=a\)
\(\Rightarrow\left(a-1\right)\left(a+1\right)-24=0\)
\(\Rightarrow a^2-1-24=0\)
\(\Rightarrow a^2-25=0\)
\(\Rightarrow\left(a-5\right)\left(a+5\right)=0\)
\(\Rightarrow\left(n^2+3n+1-5\right)\left(n^2+3n+1+5\right)=0\)
\(\Rightarrow\left(n^2+3n-4\right)\left(n^2+3n+6\right)=0\)
\(\Rightarrow\left(n^2-n+4n-4\right)\left(n^2+3n+6\right)=0\)
\(\Rightarrow\left[n\left(n-1\right)+4\left(n-1\right)\right]\left(n^2+3n+6\right)=0\)
\(\Rightarrow\left(n-1\right)\left(n+4\right)\left(n^2+3n+6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}n-1=0\\n+4=0\\n^2+3n+6=0\end{matrix}\right.\)
Mà ta có:
\(n^2+3n+6\)
\(=n^2+2.n\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}+6\)
\(=\left(n+\dfrac{3}{2}\right)^2+\dfrac{15}{4}\)
Vì \(\left(n+\dfrac{3}{2}\right)^2\ge0\) với mọi n
\(\Rightarrow\left(n+\dfrac{3}{2}\right)^2+\dfrac{15}{4}\ge\dfrac{15}{4}\)
\(\Rightarrow n^2+3n+6\) vô nghiệm
\(\Rightarrow\left[{}\begin{matrix}n-1=0\\n+4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}n=1\\n=-4\end{matrix}\right.\)
Vì n là số tự nhiên
=> n = 1
Vậy 4 số tự nhiên liên tiếp có tích là 24 lần lượt là 1 ; 2 ; 3 ; 4