K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2016

Đặt \(P=x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)
\(P=x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)

\(=x^4\left(y-z\right)+y^4z-y^4x+z^4x-z^4y\)

\(=x^4\left(y-z\right)+y^4z-z^4y-y^4x+z^4x\)

\(=x^4\left(y-z\right)+yz\left(y^3-z^3\right)-x\left(y^4-z^4\right)\)

\(=x^4\left(y-z\right)+yz\left(y-z\right)\left(y^2+yz+z^2\right)-x\left(y-z\right)\left(y^3+y^2z+yz^2+z^3\right)\)

\(=\left(y-z\right)\left[x^4+yz\left(y^2+yz+z^2\right)-x\left(y^3+y^2z+yz^2+z^3\right)\right]\)

\(=\left(y-z\right)\left(x^4+y^3z+y^2z^2+yz^3-xy^3-xy^2z-xyz^2-xz^3\right)\)

\(=\left(y-z\right)\left(x^4-xz^3-xy^3+y^3z-xy^2z+y^2z^2-xyz^2+yz^3\right)\)

\(=\left(y-z\right)\left[x\left(x^3-z^3\right)-y^3\left(x-z\right)-y^2z\left(x-z\right)-yz^2\left(x-z\right)\right]\)

\(=\left(y-z\right)\left[x\left(x-z\right)\left(x^2+xz+z^2\right)-y^3\left(x-z\right)-y^2z\left(x-z\right)-yz^2\left(x-z\right)\right]\)

\(=\left(y-z\right)\left(x-z\right)\left[x\left(x^2+xz+z^2\right)-y^3-y^2z-yz^2\right]\)

\(=\left(y-z\right)\left(x-z\right)\left(x^3+x^2z+xz^2-y^3-y^2z-yz^2\right)\)

\(=\left(y-z\right)\left(x-z\right)\left(x^3-y^3+x^2z-y^2z+xz^2-yz^2\right)\)

\(=\left(y-z\right)\left(x-z\right)\left[\left(x-y\right)\left(x^2+xy+y^2\right)+z\left(x^2-y^2\right)+z^2\left(x-y\right)\right]\)

\(=\left(y-z\right)\left(x-z\right)\left[\left(x-y\right)\left(x^2+xy+y^2\right)+z\left(x-y\right)\left(x+y\right)+z^2\left(x-y\right)\right]\)

\(=\left(y-z\right)\left(x-z\right)\left(x-y\right)\left[x^2+xy+y^2+z\left(x+y\right)+z^2\right]\)

\(=\left(y-z\right)\left(x-z\right)\left(x-y\right)\left(x^2+xy+y^2+xz+yz+z^2\right)\)

Đặt \(A=x^2+xy+y^2+xz+yz+z^2\)

\(A=\frac{2\left(x^2+xy+y^2+xz+yz+z^2\right)}{2}=\frac{2x^2+2xy+2y^2+2xz+2yz+2z^2}{2}\)

\(=\frac{\left(x^2+2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(x^2+2xz+z^2\right)}{2}\)

\(=\frac{\left(x+y\right)^2+\left(y+z\right)^2+\left(x+z\right)^2}{2}\)

=>\(P=\left(y-z\right)\left(x-z\right)\left(x-y\right).\frac{\left(x+y\right)^2+\left(y+z\right)^2+\left(x+z\right)^2}{2}\)

Ta có: \(x>y>z< =>\hept{\begin{cases}x>y\\y>z\\x>z\end{cases}}< =>\hept{\begin{cases}x-y>0\\y-z>0\\x-z>0\end{cases}}\)

Dễ thấy \(\left(x+y\right)^2\ge0;\left(y+z\right)^2\ge0;\left(x+z\right)^2\ge0\) với mọi x;y;z

\(=>P>0\) (đpcm)

18 tháng 10 2020

   4x(x+y)(x+y+z)(x+z) + y^2.z^2

= 4(x^2 + xy + xz)( x^2 + xy + xz + yz) + y^2.z^2

Đặt x^2 + yz + xz = t

=>  4x(x+y)(x+y+z)(x+z) + y^2.z^2 = 4t( t + yz) + y^2.z^2 = 4t^2 + 4tyz +y^2.z^2 = ( 2t + yz)^2 \(\ge\)0(ĐPCM)

Vậy 4t^2 + 4tyz +y^2.z^2 = ( 2t + yz)^2 \(\ge\)0 với moji x,y,z

13 tháng 7 2023

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xz\) Thay x+y+z=0 vào

\(\Rightarrow0=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)

\(\Leftrightarrow x^2+y^2+z^2=-2\left(xy+yz+xz\right)\) (1)

Ta có

\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2\) (2)

Bình phương 2 vế của (1)

\(\left(x^2+y^2+z^2\right)^2=4\left(xy+yz+xz\right)^2\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=4\left(x^2y^2+y^2z^2+x^2z^2+2xy^2z+2xyz^2+2x^2yz\right)\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=4\left[x^2y^2+y^2z^2+x^2z^2+2xyz\left(x+y+z\right)\right]\)

Do x+y+z=0 nên

\(\left(x^2+y^2+z^2\right)^2=4\left(x^2y^2+y^2z^2+x^2z^2\right)\)

\(\Rightarrow\dfrac{\left(x^2+y^2+z^2\right)^2}{2}=2x^2y^2+2y^2z^2+2x^2z^2\) (3)

Thay (3) vào (2)

\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+\dfrac{\left(x^2+y^2+z^2\right)^2}{2}\)

\(\Rightarrow2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2\) (đpcm)

 

 

 

18 tháng 10 2020

\(\ge\)bao nhiêu

8 tháng 11 2017

Áp dụng BĐT Cô-si cho 2 số dương, ta có:

\(18x+\frac{2}{x}\ge2\sqrt{18x.\frac{2}{x}}=12\)

Chứng minh tương tự, ta có

\(18y+\frac{2}{y}\ge12\)

\(18z+\frac{2}{z}\ge12\)

Từ đó suy ra \(18\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge36\)(*)

Lại có \(x+y+z\le1\Rightarrow-\left(x+y+z\right)\ge-1\)(**)

Từ (*) và (**) suy ra \(18\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\left(x+y+z\right)\ge36-1\)

                           \(\Leftrightarrow17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)

Vậy \(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)với \(x+y+z\le1\)

18 tháng 10 2020

Ta có: \(4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)

\(=4\left[x\left(x+y+z\right)\right]\left[\left(x+y\right)\left(x+z\right)\right]+y^2z^2\)

\(=4\left(x^2+xy+zx\right)\left(x^2+xy+yz+zx\right)+y^2z^2\) \(\left(1\right)\)

Đặt \(\hept{\begin{cases}x^2+xy+zx=a\\yz=b\end{cases}}\)

Khi đó: \(\left(1\right)=4a\left(a+b\right)+b^2\)

\(=4a^2+4ab+b^2\)

\(=\left(2a+b\right)^2\)

\(=\left(2x^2+2xy+2zx+yz\right)^2\ge0\left(\forall x,y,z\right)\)

=> đpcm

18 tháng 10 2020

Ta có:\(4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2=4x\left(x+y+z\right)\left(x+y\right)\left(x+z\right)+y^2z^2=4\left(x^2+xy+xz\right)\left(x^2+xy+yz+zx\right)+y^2z^2\)Đặt \(x^2+xy+xz=t\)thì biểu thức trên trở thành \(4t\left(t+yz\right)+y^2z^2=4t^2+4yzt+y^2z^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+yz\right)^2\ge0\forall x,y,z\left(đpcm\right)\)

31 tháng 3 2023

mình chịu

31 tháng 3 2023

không biết làm

21 tháng 8 2015

Xét hiệu: (x+y)(y+z)(z+x)-8xyz=0
(=) (x+y)>=2√xy
(y+z)>=2√yz
(z+x)>=2√zx
(=) (x+y)(y+z)(z+x)>=8√x^2 y^2 z^2
(=) (x+y)(y+z)(x+z)>=8|x| |y| |z|
(=) ( x+y)(y+z)(z+x)>= 8xyz

 

8 tháng 5 2019

Áp dụng bất đẳng thức Cô-si ta có:

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}\cdot2\sqrt{yz}\cdot2\sqrt{zx}\)

\(=8\sqrt{x^2y^2z^2}=8xyz\)

Dấu = khi x=y=z