Cho hình thang ABCD cân .Biết AC cắt BD tại O và góc DOC =60 độ.Gọi I,J,K lần lượi là trung điểm của OD,OA,BC .Chứng minh tam giác IJk là tam giác đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 đường chéo AC; BD cắt nhau tại O. Do hình thang ABCD cân (AB//CD)
=> OA=OB; OC=OD (Tự chứng minh)
Mà ^AOB=600 => ^COD=600 (Đối đỉnh) => Tam giác AOB và tam giác COD đều.
Xét tam giác AOB đều: H là trung điểm OA => BH vuông góc OA
=> Tam giác BHC vuông tại H; K là trung điểm của BC => HK=BK=CK=BC/2 (1)
Tương tự: Tam giác CIB vuông tại I, K là trung điểm BC => IK=CK=BK=BC/2 (2)
Xét tam giác AOD: H là trung điểm OA; I là trung điểm OD => IH là đường trung bình tam giác AOD.
=> IH=AD/2. Mà hình thang ABCD cân (AB//CD) => AD=BC => IH=BC/2 (3)
Từ (1); (2) và (3) => HK=IK=IH => Tam giác HIK là tam giác đều (đpcm).
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)