K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2021

a: Xét tứ giác AHDK có 

\(\widehat{AHD}=\widehat{AKD}=\widehat{KAH}=90^0\)

Do đó: AHDK là hình chữ nhật

29 tháng 10 2021

b: Xét tứ giác ANBE có 

M là trung điểm của AB

M là trung điểm của NE

Do đó: ANBE là hình bình hành

mà NA=NB

nên ANBE là hình thoi

a: Xét tứ giác AMDN có

\(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)

Do đó: AMDN là hình chữ nhật

b: AC=8cm

\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)

c: Ta có: D và E đối xứng nhau qua AB

nên AD=AE

=>ΔADE cân tại A

mà AB là đường trung trực

nên AB là tia phân giác của góc DAE(1)

Ta có: D và F đối xứng nhau qua AC

nên AC là đường trung trực của DF

=>AD=AF

=>ΔADF cân tại A

mà AC là đường trung trực của DF

nên AC là tia phân giác của góc DAF(2)

Từ (1) và (2) suy ra \(\widehat{FAE}=2\cdot\left(\widehat{BAD}+\widehat{CAD}\right)=2\cdot90^0=180^0\)

Do đó: F,A,E thẳng hàng

18 tháng 12 2022

a: Xét ΔCAB có CF/CA=CE/CB

nên FE//AB và FE=AB/2

=>FE//AD và FE=AD

Xét tứ giác AFED có

FE//AD

FE=AD

góc FAD=90 độ

Do đó: AFED là hình chữ nhật

Xét tứ giác AECK có

F là trung điểm chung của AC và EK

EA=EC

Do đó: AECK là hình thoi

b: \(S_{ABC}=\dfrac{1}{2}\cdot4\cdot5=10\left(cm^2\right)\)

18 tháng 12 2022

a: Xét ΔCAB có CF/CA=CE/CB

nên FE//AB và FE=AB/2

=>FE//AD và FE=AD

Xét tứ giác AFED có

FE//AD

FE=AD

góc FAD=90 độ

Do đó: AFED là hình chữ nhật

Xét tứ giác AECK có

F là trung điểm chung của AC và EK

EA=EC

Do đó: AECK là hình thoi

b: \(S_{ABC}=\dfrac{1}{2}\cdot4\cdot5=10\left(cm^2\right)\)

3 tháng 5 2022

a) -Sửa đề: \(AC=4cm\) (sửa lại cho số được đẹp)

-△ABC vuông tại A có: \(BC^2=AB^2+AC^2\).

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

△ACH và △BCA có: \(\widehat{AHC}=\widehat{BAC};\widehat{BCA}\) là góc chung.

\(\Rightarrow\)△ACH∼△BCA (g-g) 

\(\Rightarrow\dfrac{CH}{CA}=\dfrac{AC}{BC}\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{4^2}{5}=3,2\left(cm\right)\).

△ABC có: IH//BC (cùng vuông góc AB).

\(\Rightarrow\dfrac{AI}{AB}=\dfrac{CH}{CB}\Rightarrow AI=\dfrac{AB.CH}{CB}=\dfrac{3.3,2}{5}=1,92\left(cm\right)\).

-Tứ giác AIHK có: \(\widehat{IAK}=\widehat{AIH}=\widehat{AKH}=90^0\).

\(\Rightarrow\)AIHK là hình chữ nhật \(\Rightarrow\widehat{AKI}=\widehat{CAH}\).

\(\widehat{CAH}=90^0-\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{AKI}=\widehat{ABC}\).

-△AIK và △ACB có: \(\widehat{AKI}=\widehat{ABC};\widehat{BAC}\) là góc chung.

\(\Rightarrow\)△AIK∼△ACB (g-g).

\(\Rightarrow\dfrac{S_{AIK}}{S_{ACB}}=\left(\dfrac{AI}{AC}\right)^2=\left(\dfrac{1,92}{4}\right)^2=0,2304\)

\(\Rightarrow S_{AIK}=0,2304.S_{ABC}=0,2304.\dfrac{1}{2}.3.4=1,3824\left(cm^2\right)\)

3 tháng 5 2022

b) *CM cắt AH tại D, BM cắt AC tại F.

AH⊥BC tại H, BM⊥BC tại B \(\Rightarrow\)AH//BM.

E đối xứng với H qua AB \(\Rightarrow\widehat{HAB}=\widehat{BAM}\)mà \(\widehat{HAB}=\widehat{ABM}\).

\(\Rightarrow\)\(\widehat{ABM}=\widehat{BAM}\) \(\Rightarrow\)△ABM cân tại M \(\Rightarrow AM=BM\)

\(\widehat{ABM}=\widehat{BAM}\Rightarrow\widehat{MAF}=\widehat{MFA}\) \(\Rightarrow\)△AMF cân tại M \(\Rightarrow AM=FM\).

\(\Rightarrow BM=FM\) nên M là trung điểm BC.

-△BCM có: DH//BM \(\Rightarrow\dfrac{DH}{BM}=\dfrac{DC}{MC}\).

-△FCM có: AD//FM \(\Rightarrow\dfrac{DA}{FM}=\dfrac{DC}{MC}=\dfrac{DH}{BM}\Rightarrow DA=DH\)

\(\Rightarrow\)D là trung điểm AH mà AIHK là hình chữ nhật.

\(\Rightarrow\)D là trung điểm IK.

-Vậy IK, AH, CM đồng quy tại D.