Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4) Gọi D là trung điểm của CK.
ΔABC cân ở A có AH là đường cao, đồng thời là đường trung tuyến
⇒ CH ⊥ FH; H là trung điểm của BC
⇒ DH là đường trung bình của ΔBCK ⇒ DH // BK.
I là trung điểm của HK ⇒ DI là đường trung bình của ΔCHK
⇒ DI // CH ⇒ DI ⊥ FH.
K là hình chiếu của H lên CF ⇒ HI ⊥ DF
⇒ I là trực tâm của ΔDFH ⇒ FI ⊥ DH ⇒ FI ⊥ BK.
a) diện tích của tam giác ABC là SABC=1/2.AH.BC=1/2.16.12=96 tam giác ABC có M là trung điểm AB N là trung điểm AC nên MN là đường trung bình của tam giác ABC => MN=1/2BC=1/2.12=6 vậy MN=6
Mình vẽ hình hơi xâu, bạn thông cảm nhé!
a) Xét từ giác ABMC có: + AM cắt BC tại D (bạn dùng ký hiệu giao nhé)
+ DA = DM (gt)
+ DB = DM(gt)
suy ra, tứ giác AMCM là hình bình hành mà ta có góc CAB là góc vuông suy ra tứ giác ABMC là hình chữ nhật
Các câu còn lại bạn đầu có thể giải theo cách trên nhé!
( e mk chưa làm đc, mk mới đc học đến bào hình chữ nhật thôi, sory)
a: Xét tứ giác AMIN có
\(\widehat{AIM}=\widehat{AIN}=\widehat{NAM}=90^0\)
Do đó: AMIN là hình chữ nhật
a: Xét tứ giác AKIH có
\(\widehat{AKI}=\widehat{AHI}=\widehat{HAK}=90^0\)
Do đó: AKIH là hình chữ nhật
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE