Một vật AB hình mũi tên có cao 2cm đặt vuông góc với trục chính của thấu kính hội tụ ta thu được ảnh ảo cùng chiều cao 6cm A) Dựng ảnh AB của AB theo đúng tỉ lệ B) Tính khoảng cách từ ảnh đến thấu kính (d') và từ vật đến thấu kính (d) Biết rằng thấu kính có tiêu cự là f=20cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Bạn tự vẽ ( ảnh thật )
b. Xét tam giác \(OAB\sim\) tam giác \(OA'B'\)
\(\dfrac{OA}{OA'}=\dfrac{AB}{A'B'}=\dfrac{OI}{A'B'}\) ( do OI = AB ) (1)
Xét tam giác \(OIF'\sim\) tam giác \(A'B'F'\)
\(\dfrac{OI}{A'B'}=\dfrac{OF'}{A'F'}\) (2)
\(\left(1\right);\left(2\right)\Rightarrow\dfrac{OA}{OA'}=\dfrac{OF'}{A'F'}=\dfrac{OF'}{OA'-OF'}\)
\(\Leftrightarrow\dfrac{6}{OA'}=\dfrac{4}{OA'-4}\)
\(\Leftrightarrow OA'=12\left(cm\right)\)
Thế \(OA'=12\) vào \(\left(1\right)\Leftrightarrow\dfrac{6}{12}=\dfrac{0,5}{A'B'}\)
\(\Leftrightarrow A'B'=1\left(cm\right)\)
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{4}=\dfrac{1}{8}+\dfrac{1}{d'}\Rightarrow d'=8cm\)
Chiều cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{h}{h'}=\dfrac{8}{8}=1\Rightarrow h=h'\)
Ảnh thật, ngược chiều và lớn hơn vật.
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{4}=\dfrac{1}{6}+\dfrac{1}{d'}\)
\(\Rightarrow d'=12cm\)
Chiều cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{1}{h'}=\dfrac{6}{12}\Rightarrow h'=2cm\)
Ta có: \(\dfrac{h}{h'}=\dfrac{d}{d'}=\dfrac{2}{6}\Rightarrow\dfrac{d}{d'}=\dfrac{1}{3}\Rightarrow d'=3d\)
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{20}=\dfrac{1}{d}+\dfrac{1}{3d}\)
\(\Rightarrow d=\dfrac{80}{3}cm\)
\(\Rightarrow d'=3d=80cm\)