K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2020

MA=MB; NB=NC => MN là đường trung bình của tg ABC => MN//AC (1)

Xét tg ACD và tg END có

^ADC = ^EDN (góc đối đỉnh)

CN=BC/2; CD=BC/4 => CD=CN/2 hay DC=DN

DA=DE

=> tg ACD = tg END (c.g.c) => ^DAC = ^DEN => EN//AC (2)

Từ (1) và (2) => MN trùng EN (Từ 1 điểm ngoài đường thẳng chỉ dựng được duy nhất 1 dt // với đường thẳng đã cho)

=> M;N;E thẳng hàng

1 tháng 8 2020

CẬU ƠI LỚP 7 ĐÃ HỌC ĐƯỜNG TRUNG BÌNH đâu  , bài này tớ có cách khác 

A B C D E M N

A) NỐI B VÀ E

TA CÓ

 \(DC=\frac{1}{4}BC\left(1\right)\)

MÀ \(NC=\frac{1}{2}BC\)

THAY \(ND+DC=\frac{1}{2}BC\)

THAY (1) VÀO TA CÓ

 \(ND+\frac{1}{4}BC=\frac{1}{2}BC\)

\(\Leftrightarrow ND=\frac{1}{2}BC-\frac{1}{4}BC\)

\(\Leftrightarrow ND=BC\left(\frac{1}{2}-\frac{1}{4}\right)\)

\(\Leftrightarrow ND=\frac{1}{4}BC\)

MÀ \(DC=\frac{1}{4}BC\)

\(\Rightarrow ND=DC\left(2\right)\)

TA LẠI CÓ \(BN=NC\left(gt\right)\)

THAY \(BN=ND+DC\)

THAY (2) VÀO TA CÓ

\(BN=2ND\)

MÀ \(BN+ND=BD\)

THAY \(2ND+ND=BD\)

\(\Leftrightarrow3ND=BD\)

\(\Leftrightarrow ND=\frac{1}{3}BD\)

VÌ AD = DE => BD LÀ ĐƯỜNG TRUNG TUYẾN THỨ NHẤT CỦA  \(\Delta ABE\)

MÀ \(ND=\frac{1}{3}BD\)

=> N LÀ TRỌNG TÂM CỦA \(\Delta ABE\)

VÌ AM=BM

=> EM LÀ ĐƯỜNG TRUNG TUYẾN THỨ 2 CỦA \(\Delta ABE\)

MÀ N LÀ TRỌNG TÂM CỦA \(\Delta ABE\)

=> EM BẮT BUỘT ĐI QUA N 

=> BA ĐIỂM E,M,N THẲNG HÀNG (ĐPCM)

17 tháng 12 2023

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: Ta có: ΔABM=ΔACM

=>\(\widehat{BAM}=\widehat{CAM}\)

=>\(\widehat{DAM}=\widehat{EAM}\)

Xét ΔDAM và ΔEAM có

DA=EA

\(\widehat{DAM}=\widehat{EAM}\)

AM chung

Do đó: ΔDAM=ΔEAM

=>MD=ME

c: Xét ΔNKD và ΔNMB có

NK=NM

\(\widehat{KND}=\widehat{MNB}\)(hai góc đối đỉnh)

ND=NB

Do đó: ΔNKD=ΔNMB

=>\(\widehat{NKD}=\widehat{NMB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên KD//BM

mà M\(\in\)BC

nên KD//BC

Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

Ta có: KD//BC

DE//BC

KD,DE có điểm chung là D

Do đó: K,D,E thẳng hàng

cho tam giác ABC. gọi M,N,E lần lượt là trung điểm BC,AC,AB.Trên tia đối của tia NE lấy điểm P sao cho N là trung điểm EP 1, CM: AE=CP=EB 2, tam giác BEC= tam giác PCE 3,CM: EN // BC,EN= BC 4, Gọi G là trọng tâm của tam giác ABC. Trên tia SG lấy điểm D sao cho G là trung điểm AD. So sánh cạnh của tam giac BGD với các đường trung tuyến của tam giác ABC 5, So sánh các đương trung tuyến của tam giác BGD với các cạnh...
Đọc tiếp

cho tam giác ABC. gọi M,N,E lần lượt là trung điểm BC,AC,AB.Trên tia đối của tia NE lấy điểm P sao cho N là trung điểm EP

1, CM: AE=CP=EB

2, tam giác BEC= tam giác PCE

3,CM: EN // BC,EN= BC

4, Gọi G là trọng tâm của tam giác ABC. Trên tia SG lấy điểm D sao cho G là trung điểm AD. So sánh cạnh của tam giac BGD với các đường trung tuyến của tam giác ABC

5, So sánh các đương trung tuyến của tam giác BGD với các cạnh của tam giác abc

6, Từ E ke đường thẳng song song với BC cắt AM tại K.CM K là trung điểm của AM. CM G là trọng tâm của tam giác MNE

7, Đường thẳng ck cắt ab tại I. J là trung điểm của AJ và AI =\(\(\(\frac{1}{3}\)\)\)AB

8, CMR trong 3 dường trung tuyến của tam giác ABC tổng 2 đường còn lại

9, Trên tia AB lấy điểm B' sao cho B là trung điểm EB' .Trên tia HC lấy điểm C' sao cho C là trung điểm của AC. CM B',M,A" thẳng hàng

10, Cho AM =12cm, BN= 2cm, CF =15 cm. Tính BA

11, G là trọng tâm của tam giác ABC, coa cạnh BC cố định. CMR đường thẳng AG luôn đi qua 1 điểm cố định khi A thay đổi

12, Cho điểm O thay đổi trong tam giác ABC. Lấy O sao cho M' là trung điểm của OO'. Gọi M là trung điểm AO'. CM OM' luôn luôn đi qua 1 điểm cố định

0
7 tháng 4 2022

Cần anh ơi:))

7 tháng 4 2022

K sao đâu ạ

12 tháng 10 2021

a: Xét ΔABC và ΔAED có 

AB=AE

\(\widehat{BAC}=\widehat{EAD}\)

AC=AD

Do đó: ΔABC=ΔAED

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

C là trung điểm của AE

\( \Rightarrow \) BC là trung tuyến của tam giác ABE (1)

D thuộc BC, \(BD = 2DC \Rightarrow BD = 2\left( {BC - BD} \right) \Rightarrow 3BD = 2BC \Rightarrow BD = \dfrac{2}{3}BC\)(2)

Từ (1) và (2) suy ra: D là trọng tâm của tam giác ABE

\( \Rightarrow \) AD là đường trung tuyến ứng với BE

Mà AD là đường phân giác của \(\widehat {BAC}\)

\( \Rightarrow \) Tam giác ABE cân tại A.