K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2022

`Answer:`

\(a^2+2b^2-2ab+2a-4b+2=0\)

\(\Leftrightarrow a^2+b^2+b^2-2ab+2a-2b-2b+1+1=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(2a-2b\right)+1+\left(b^2-2b+1\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+2.\left(a-b\right)+1+\left(b-1\right)^2=0\)

\(\Leftrightarrow\left(a-b+1\right)^2+\left(b-1\right)^2=0\)

Mà \(\hept{\begin{cases}\left(a-b+1\right)^2\ge0\forall a,b\\\left(b-1\right)^2\ge0\forall b\end{cases}}\Rightarrow\left(a-b+1\right)^2+\left(b-1\right)^2\ge0\forall a,b\)

Ta có: \(\left(a-b+1\right)^2+\left(b-1\right)^2=0\)

\(\hept{\begin{cases}a-b+1=0\\b-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a-1+1=0\\b=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=1\end{cases}}\)

5 tháng 5 2019

a, \(\left(a^2+b^2-2ab+2a-2b+1\right)+\left(b^2-2b+1\right)=0\)

=> \(\left(a-b+1\right)^2+\left(b-1\right)^2=0\)

Mà \(\left(a-b+1\right)^2\ge0,\left(b-1\right)^2\ge0\)

=> \(\hept{\begin{cases}a-b+1=0\\b=1\end{cases}\Rightarrow\hept{\begin{cases}a=0\\b=1\end{cases}}}\)

b,Tương tự 

\(\left(a-2b+1\right)^2+\left(b-1\right)^2=0\)

=>\(\hept{\begin{cases}a=1\\b=1\end{cases}}\)

NV
22 tháng 4 2019

\(VT=a^2+b^2+1-2ab+2a-2b+b^2-2b+1\)

\(VT=\left(a-b+1\right)^2+\left(b-1\right)^2\ge0\) (đpcm)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=0\\b=1\end{matrix}\right.\)

3 tháng 3 2020

Ta có :

\(\sqrt{4a^2+12}=\sqrt{4a^2+4ab+2c\left(a+b\right)}=\sqrt{\left(2a+c\right)\left(2a+2b\right)}\)

\(\le\frac{4a+2b+c}{2}\)

Tương tự : \(\sqrt{4b^2+12}\le\frac{4b+2a+c}{2}\)\(\sqrt{c^2+12}=\sqrt{\left(2a+c\right)\left(2b+c\right)}\le\frac{2a+2b+2c}{2}\)

\(\Rightarrow\sqrt{4a^2+12}+\sqrt{4b^2+12}+\sqrt{c^2+12}\le\frac{4a+2b+c+4b+2a+c+2a+2b+2c}{2}\)

\(=4a+4b+2c\)

\(\Rightarrow\frac{2a+2b+c}{\sqrt{4a^2+12}+\sqrt{4b^2+12}+\sqrt{c^2+12}}\ge\frac{2a+2b+c}{4a+4b+2c}=\frac{1}{2}\)

Dấu "=" xảy ra khi a = b = 1 ; c = 2

2 tháng 12 2016

Câu 1:

\(Q=a^2+4b^2-10a\)

\(=a^2-10a+25+4b^2-25\)

\(=\left(a-5\right)^2+4b^2-25\)

\(\left(a-5\right)^2\ge0\)

\(4b^2\ge0\)

\(\Rightarrow\left(a-5\right)^2+4b^2-25\ge-25\)

Dấu ''='' xảy ra khi \(\left[\begin{array}{nghiempt}a-5=0\\b=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}a=5\\b=0\end{array}\right.\)

\(MinQ=-25\Leftrightarrow a=5;b=0\)

Câu 2:

Tam giác DAC vuông tại D có:

\(AC^2=CD^2+AD^2\)

\(=CD^2+CD^2\) (ABCD là hình vuông)

\(=2CD^2\)

\(=2\times\left(3\sqrt{2}\right)^2\)

\(=2\times9\times2\)

\(=36\)

\(AC=\sqrt{36}=6\left(cm\right)\)

Câu 3:

\(\frac{1}{a-1}=1\)

\(a-1=1\)

\(a=1+1\)

\(a=2\)

Thay a = 2 vào P, ta có:

\(P=\frac{2-2\times2\times b-b}{2\times2+3\times2\times b-b}\)

\(=\frac{2-4b-b}{4+6b-b}\)

\(=\frac{2-5b}{4+5b}\)