cho đường tròn O điểm A nằm ngoài đường tròn từ A vẽ các tiếp tuyến AB , AC với đường tròn ( BC là tiếp điểm ) vẽ các tuyến góc AMN với đường tròn O a, CMR AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác OBAC có
\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối
\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OBAC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Bổ sung đề; OA cắt BC tại D
a: Ta có: ΔOBA vuông tại B
=>B nằm trên đường tròn đường kính OA(1)
Ta có: ΔOCA vuông tại C
=>C nằm trên đường tròn đường kính OA(2)
Từ (1) và (2) suy ra B,C,O,A cùng thuộc đường tròn đường kính OA
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(3)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(4)
Từ (3) và (4) suy ra OA là đường trung trực của BC
b: OA là đường trung trực của BC
Do đó: OA\(\perp\)BC tại D và D là trung điểm của BC
Xét ΔOBA vuông tại B có BD là đường cao
nên \(OD\cdot OA=OB^2=R^2\)
Ta có: ΔOEF cân tại O
mà OG là đường trung tuyến
nên OG\(\perp\)EF tại G
Xét ΔOGA vuông tại G và ΔODH vuông tại D có
góc GOA chung
Do đó: ΔOGA đồng dạng với ΔODH
=>\(\dfrac{OG}{OD}=\dfrac{OA}{OH}\)
=>\(OG\cdot OH=OA\cdot OD\)
c: Ta có: \(OG\cdot OH=OA\cdot OD\)
\(OA\cdot OD=R^2\)
Do đó: \(OG\cdot OH=R^2=OE^2\)
=>\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)
Xét ΔOGE và ΔOEH có
\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)
\(\widehat{GOE}\) chung
Do đó: ΔOGE đồng dạng với ΔOEH
=>\(\widehat{OGE}=\widehat{OEH}\)
=>\(\widehat{OEH}=90^0\)
=>HE là tiếp tuyến của (O)
a: Xét ΔOBA và ΔOCA có
OB=OC
\(\widehat{BOA}=\widehat{COA}\)
OA chung
Do đó: ΔOBA=ΔOCA
=>AC là tiếp tuyến của (O)
1: Xét ΔOBC có
OH là đường cao
OH là đường trung tuyến
Do đó: ΔOCB cân tại O
hay C thuộc đường tròn(O)
Xét ΔOBA và ΔOCA có
OB=OC
AB=AC
OA chung
Do đó: ΔOBA=ΔOCA
Suy ra: \(\widehat{OBA}=\widehat{OCA}=90^0\)
hay AC là tiếp tuyến của (O)
2: Xét ΔABM và ΔANB có
\(\widehat{ABM}=\widehat{ANB}\)
\(\widehat{BAM}\) chung
Do đó: ΔABM\(\sim\)ΔANB
Suy ra: AB/AN=AM/AB
hay \(AB^2=AM\cdot AN\left(1\right)\)
Xét ΔOBA vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AN=AH\cdot AO\)
a: góc KOA+góc BOA=90 độ
góc KAO+góc COA=90 độ
mà góc BOA=góc COA
nên góc KOA=góc KAO
=>ΔKAO cân tại K
b: Xét ΔOBA vuông tại B có sin BAO=OB/OA=1/2
nên góc BAO=30 độ
=>góc BOA=60 độ
Xét ΔOBI có OB=OI và góc BOI=60 độ
nên ΔOBI đều
=>OI=OB=1/2OA=R
=>I là trung điểm của OA
ΔKAO cân tại K
mà KI là trung tuyến
nên KI vuông góc với OI
=>KI là tiếp tuyến của (O)
Đề thiếu rồi bạn