K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2019

\(x^2-2\sqrt{x^2-7x+10}< 7x-2\)

\(ĐK:x\ge5\)

BPT \(\Leftrightarrow x^2-7x+2-2\sqrt{x^2-7x+10}< 0\)

\(\Leftrightarrow t^2-8-2t< 0\left(t=\sqrt{x^2-7x+10}\ge0\right)\)

\(\Leftrightarrow\left(t+2\right)\left(t-4\right)< 0\)

\(\Leftrightarrow-2< t< 4\Leftrightarrow-2< \sqrt{x^2-7x+10}< 4\)

\(\Leftrightarrow\sqrt{x^2-7x+10}< 4\Leftrightarrow x^2-7x-6< 0\)

\(\Leftrightarrow\orbr{\begin{cases}5\le x< \frac{7+\sqrt{73}}{2}\\\frac{7-\sqrt{73}}{2}< x\le2\end{cases}}\)

Chúc bạn học tốt !!!

28 tháng 9 2019

\(x^2-2\sqrt{x^2-7x+10}< 7x-2\)

ĐKXĐ: \(x\ge5\)

Ta có BĐT \(\Leftrightarrow x^2-2\sqrt{x^2-7x+10}-7x+2< 0\)

\(\Leftrightarrow x^2-7x+10-2\sqrt{x^2-7x+10}+1-9< 0\)

\(\Leftrightarrow\left(\sqrt{x^2-7x+10}-1\right)^2-9< 0\)

\(\Leftrightarrow\left(\sqrt{x^2-7x+10}-4\right)\left(\sqrt{x^2-7x+10}-2\right)< 0\)

Vì \(\sqrt{x^2-7x+10}\ge0\Rightarrow\sqrt{x^2-7x+10}< 4\)

\(\Leftrightarrow x^2-7x+10< 16\)

\(\Leftrightarrow x^2-7x-6< 0\)

Chúc bạn học tốt !!!

28 tháng 9 2019

\(x^2-2\sqrt{x^2-7x+10}< 7x-2\)

\(\Rightarrow x^2-7x+10-2\sqrt{x^2-7x+10}+1< 9\)

\(\Rightarrow\left(\sqrt{x^2-7x+10}-1\right)^2< 9\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x^2-7x+10}-1< 3\\\sqrt{x^2-7x+10}-1< -3\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x^2-7x+10}< 4\\\sqrt{x^2-7x+10}< -2\left(L\right)\end{cases}}\)

\(\Rightarrow x^2-7x+10=16\)

\(\Rightarrow x^2-2x-5x+10=16\)

\(\Rightarrow\left(x-2\right)\left(x-5\right)=16\)

...........................

30 tháng 10 2023

\(\Leftrightarrow x^2-4x+3>0\left(x\ne\pm5\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x< 1\\x>3\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
30 tháng 10 2023

Lời giải:
ĐK: $25-x^2>0\Leftrightarrow -5< x< 5$
$\frac{x^2-4x+3}{\sqrt{25-x^2}}>0$

$\Leftrightarrow x^2-4x+3>0$ (do $\sqrt{25-x^2}>0$)

$\Leftrightarrow (x-1)(x-3)>0$

$\Leftrightarrow x>3$ hoặc $x<1$

Kết hợp với đkxđ suy ra $3< x< 5$ hoặc $-5< x< 1$

AH
Akai Haruma
Giáo viên
1 tháng 3 2021

Lời giải:

a) ĐK: $x\geq 0$

BPT $\Leftrightarrow \sqrt{x+2}(\sqrt{2}-1)\leq \sqrt{x}$

$\Leftrightarrow (3-2\sqrt{2})(x+2)\leq x$

$\Leftrightarrow x(2-2\sqrt{2})\leq 2(2\sqrt{2}-3)$

$\Leftrightarrow x\geq \frac{2(2\sqrt{2}-3)}{2-2\sqrt{2}}=-1+\sqrt{2}$

Vậy BPT có nghiệm $x\geq -1+\sqrt{2}$

b) ĐK: $x\geq 2$ hoặc $x\leq -2$

BPT $\Leftrightarrow (x-5)\sqrt{x^2-4}-(x-5)(x+5)\leq 0$

$\Leftrightarrow (x-5)[\sqrt{x^2-4}-(x+5)]\leq 0$Ta có 2 TH:

TH1: 

\(\left\{\begin{matrix} x-5\geq 0\\ \sqrt{x^2-4}-(x+5)\leq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 5\\ \sqrt{x^2-4}\leq x+5\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq 5\\ x^2-4\leq x^2+10x+25\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 5\\ 29\leq 10x\end{matrix}\right.\Leftrightarrow x\geq 5\)

TH2: 

\(\left\{\begin{matrix} x-5\leq 0\\ \sqrt{x^2-4}-(x+5)\geq 0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x\leq 5\\ x^2-4\geq x^2+10x+25 \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\leq 5\\ -29\geq 10x\end{matrix}\right.\)

 \(\Leftrightarrow \left\{\begin{matrix} x\leq 5\\ x\leq \frac{-29}{10}\end{matrix}\right.\Leftrightarrow x\leq \frac{-29}{10}\)

Kết hợp đkxđ suy ra $x\geq 5$ hoặc $x\leq \frac{-29}{10}$

2 tháng 2 2020

Dễ thấy: \(x^2+2x+2>0;x^2-2x+3>0\)

\(\Rightarrow bpt\Leftrightarrow\left(\sqrt{x^2+2x+2}\right)^2>\left(\sqrt{x^2-2x+3}\right)^2\)

\(\Leftrightarrow x^2+2x+2>x^2-2x+3\)

\(\Leftrightarrow4x>1\Leftrightarrow x>\frac{1}{4}\)

Vậy nghiệm của bpt là \(T=\left(\frac{1}{4};+\infty\right)\)