Cho ΔABC cân tại A(BC>AB) có đường trung tuyến AI và trọng tâm G.
a, Biết AB=5cm;BC=8cm. Tính đôi dài của các đoạn thẳng AI,BG.
b, M∈tia đối của tia AC, AM=AB.N∈tia đối của tia CA, CN=CB. C/minh BN>BM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình quên còn ý b . Trên tia đối của tia AC lấy điểm M sao cho AM =AB.Trên tia đối của tia CA lấy điểm N sao cho BC=CN. CM BN>BM
a/ kéo dài đoạn thẳng BG cắt AC tại D.Vì 3 đường trung tuyến cùng đi qua 1 điểm nên BD là đường trung truyến của góc B.
b/ Vì tam giác ABc vuông tại A nên góc C là góc nhọn suy ra góc BCN là góc tù suy ra góc CNB là góc nhọn suy ra BN> CN
vậy BA<CN<BN
BẠN TỰ VẼ HÌNH ĐI NHÉ.... NẾU THẤY ĐÚNG THÌ K CHO MÌNH VỚI
Δ A B C cân tại A (gt) mà AM là trung tuyến nên AM cũng là đường cao của tam giác đó.
Vì AM là trung tuyến của Δ A B C nên M là trung điểm của BC
⇒ B M = B C 2 = 24 : 2 = 12 c m
a) Xét ΔABD và ΔACD có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))
AD chung
Do đó: ΔABD=ΔACD(c-g-c)
Suy ra: BD=CD(hai cạnh tương ứng)
mà B,D,C thẳng hàng(gt)
nên D là trung điểm của BC
Xét ΔABC có
AD là đường trung tuyến ứng với cạnh BC(cmt)
BE là đường trung tuyến ứng với cạnh BC(gt)
AD cắt BE tại O(gt)
Do đó: O là trọng tâm của ΔABC(Định lí ba đường trung tuyến của tam giác)
b) Ta có: D là trung điểm của BC(cmt)
nên \(BD=CD=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)
Ta có: ΔABD=ΔACD(cmt)
nên \(\widehat{ADB}=\widehat{ADC}\)(hai góc tương ứng)
mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)
nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)
Áp dụng định lí Pytago vào ΔABD vuông tại D, ta được:
\(AB^2=AD^2+BD^2\)
\(\Leftrightarrow AD^2=5^2-4^2=25-16=9\)
hay AD=3(cm)
Xét ΔABC có
AD là đường trung tuyến ứng với cạnh CB(cmt)
O là trọng tâm của ΔABC(cmt)
Do đó: \(OD=\dfrac{1}{3}AD\)(Tính chất trọng tâm của tam giác)
hay OD=1(cm)
Vậy: OD=1cm
c) Xét ΔABC có
O là giao điểm của 3 đường phân giác
O là giao điểm của 3 đường trung tuyến
Do đó: ΔABC đều
a: Xét ΔABC vuông tạiA và ΔAEC vuông tại A có
AB=AE
AC chung
=>ΔABC=ΔAEC
b: Xet ΔCEB có
CA,BH là trung tuyến
CA cắt BH tại M
=>M là trọng tâm
=>CM=2/3*12=8cm
c: Xét ΔCBE có
A là trung điểm của BE
AK//CE
=>K la trung điểm của BC
=>E,M,K thẳng hàng
a) Ta có: ΔABC cân tại A(gt)
mà AI là đường trung tuyến ứng với cạnh đáy BC(gt)
nên AI là đường cao ứng với cạnh BC(Định lí tam giác cân)
hay AI\(\perp\)BC
Ta có: I là trung điểm của BC(gt)
nên \(BI=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABI vuông tại I, ta được:
\(AI^2+BI^2=AB^2\)
\(\Leftrightarrow AI^2=AB^2-BI^2=5^2-4^2=9\)
hay AI=3(cm)
Vậy: AI=3cm