K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABD và ΔACD có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))

AD chung

Do đó: ΔABD=ΔACD(c-g-c)

Suy ra: BD=CD(hai cạnh tương ứng)

mà B,D,C thẳng hàng(gt)

nên D là trung điểm của BC

Xét ΔABC có 

AD là đường trung tuyến ứng với cạnh BC(cmt)

BE là đường trung tuyến ứng với cạnh BC(gt)

AD cắt BE tại O(gt)

Do đó: O là trọng tâm của ΔABC(Định lí ba đường trung tuyến của tam giác)

b) Ta có: D là trung điểm của BC(cmt)

nên \(BD=CD=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)

Ta có: ΔABD=ΔACD(cmt)

nên \(\widehat{ADB}=\widehat{ADC}\)(hai góc tương ứng)

mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)

nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

Áp dụng định lí Pytago vào ΔABD vuông tại D, ta được:

\(AB^2=AD^2+BD^2\)

\(\Leftrightarrow AD^2=5^2-4^2=25-16=9\)

hay AD=3(cm)

Xét ΔABC có 

AD là đường trung tuyến ứng với cạnh CB(cmt)

O là trọng tâm của ΔABC(cmt)

Do đó: \(OD=\dfrac{1}{3}AD\)(Tính chất trọng tâm của tam giác)

hay OD=1(cm)

Vậy: OD=1cm

c) Xét ΔABC có 

O là giao điểm của 3 đường phân giác

O là giao điểm của 3 đường trung tuyến

Do đó: ΔABC đều

Bạn tự kẻ hình nhé .

a)Vì AD là phân giác của \(\Delta ABC\)cân tại A

\(\Rightarrow AD\)là trung tuyến của \(\Delta ABC\)

Xét \(\Delta ABC\),có:

AD,BE là hai đường trung tuyến

O là giao điểm của AD và BE

\(\Rightarrow O\)là trọng tâm của \(\Delta ABC\)

b)Vì AD là trung tuyến của ​\(\Delta ABC\)

\(\Rightarrow D\)là trung điểm của BC

\(\Rightarrow BD=\frac{BC}{2}=\frac{8}{2}=4\left(cm\right)\)

​Vì AD là phân giác của \(\Delta ABC\)cân tại A

\(\Rightarrow AD\)là đường cao của \(\Delta ABC\)

Áp dụng định lí Pytago cho \(\Delta ABD\)vuông tại D ,có:

\(AD^2=AB^2-BD^2=5^2-4^2=9\)

\(\Rightarrow AD=\sqrt{9}=3\left(cm\right)\)

Vì O là trọng tâm của \(\Delta ABC\)

\(\Rightarrow OD=\frac{1}{3}AD=\frac{1}{3}.3=1\left(cm\right)\)

c)Để O là giao điểm của 3 đường phân giác của \(\Delta ABC\)

thì \(BE\)là phân giác của \(\Delta ABC\)

mà BE là đường trung tuyến của \(\Delta ABC\)

\(\Leftrightarrow\Delta ABC\)đều .​

5 tháng 7 2021

tui có chơi

Cho tam giác ABC cân ở A có đường phân giác AD (D thuộc BC) và đường trung tuyến BE (E thuộc AC) cắt nhau tại Oa) Chứng minh: O là trọng tâm tam giác ABCb) tính độ dài OD biết AB =5cm, BC =8cmc) Tam giác ABC cần có thêm điều kiện gì để O cũng là giao điểm 3 đường phân giác của Tam giác ABC?giúp liền là được tiền...
Đọc tiếp

Cho tam giác ABC cân ở A có đường phân giác AD (D thuộc BC) và đường trung tuyến BE (E thuộc AC) cắt nhau tại O

a) Chứng minh: O là trọng tâm tam giác ABC

b) tính độ dài OD biết AB =5cm, BC =8cm

c) Tam giác ABC cần có thêm điều kiện gì để O cũng là giao điểm 3 đường phân giác của Tam giác ABC?

giúp liền là được tiền nèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèè

3
8 tháng 7 2021

k cái đm l thằng lone trẩu 

8 tháng 7 2021

thương tôi

hãy k tôi

nhìn điểm tôi đi

chán quá

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm...
Đọc tiếp

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.

2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.

3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm thuộc đoạn MC, H là hình chiếu của B trên AD. Chứng minh HM là tia phân giác của góc BHD.

4. Cho tam giác ABC và điểm I là giao điểm 3 đường phân giác của tam giác. Gọi H là chân đường vuông góc kẻ từ B đến AI. Chứng minh rằng góc IBH = góc ICA.

5. Cho tam giác ABC có góc B = 50 độ, góc C = 20 độ, đường cao AH. Tia phân giác của góc AHC cắt AC tại D. Vẽ tia Ax là tia đối của tia AB. Chứng minh điểm D nằm trên tia phân giác của góc ABC.

0
8 tháng 7 2021

Để toán hình thì vẽ hộ ra bạn ơi :v

8 tháng 7 2021

A B C E D

a) Xét tam giác ABC cân tại A có: AD là đường phân giác

=> AD cũng là đường trung tuyến

Ta có: 2 đường trung tuyến AD và BE cắt nhau tại O

=> O là trọng tâm của tam giác ABC   (đpcm)

b) Vì D là trung điểm của BC nên BD = BC : 2 = 4 (cm)

Ta có: AD là đường phân giác của tam giác ABC cân tại A

=> AD cũng là đường cao

Xét tam giác ABD vuông tại D có: AB2 = AD2 + BD2  (định lí Pytago)

=> AD2 = AB2 - BD2 = 9

=> AD = 3 (cm)

Mà O là trọng tâm của tam giác ABC

=> OD = AD . 1 : 3 = 1 (cm)

c) Để O là giao điểm của 3 đường phân giác của tam giác ABC

Mà AD cũng là đường phân giác

=> Tam giác ABC đều

23 tháng 4 2018

Cho tam giác ABC có góc A = 90 độ và đường phân giác BH (H thuộc AC),Kẻ HM vuông góc với BC (M thuộc BC),Gọi N là giao điểm của AB và MH,Chứng minh tam giác ABH = tam giác MBH,BH vuông góc với AM,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

Bỏ phần lời giải kia nhé! Chỉ quan tâm tới hình thôi.

29 tháng 4 2018

1/

a/ Ta có AB < BC (5cm < 6cm)

=> \(\widehat{ACB}< \widehat{A}\)(quan hệ giữa góc và cạnh đối diện trong tam giác)

Mà \(\widehat{ACB}=\widehat{ABC}\)(\(\Delta ABC\)cân tại A)

=> \(\widehat{ABC}< \widehat{A}\)

b/ \(\Delta ADB\)và \(\Delta ADC\)có: AB = AC (\(\Delta ABC\)cân tại A)

\(\widehat{BAD}=\widehat{DAC}\)(AD là tia phân giác \(\widehat{BAC}\))

Cạnh AD chung

=> \(\Delta ADB\)\(\Delta ADC\)(c. g. c) (đpcm)

c/ Ta có \(\Delta ABC\)cân tại A

=> Đường cao AD cũng là đường trung tuyến của \(\Delta ABC\)

và G là giao điểm của hai đường trung tuyến AD và BE của \(\Delta ABC\)

=> CF là đường trung tuyến thứ ba của \(\Delta ABC\)

=> F là trung điểm AB (đpcm)

d/ Ta có G là giao điểm của ba đường trung tuyến AD, BE và CF của \(\Delta ABC\)

=> G là trọng tâm \(\Delta ABC\)

và D là trung điểm BC (vì AD là đường trung tuyến của \(\Delta ABC\))

=> \(BD=DC=\frac{BC}{2}=\frac{6}{2}=3\)(cm)

Áp dụng định lý Pitago vào \(\Delta ADB\)vuông tại D, ta có: AD = 4cm (tự tính)

=> \(AG=\frac{2}{3}AD=\frac{2}{3}.4=\frac{8}{3}\)(cm)

Áp dụng định lý Pitago vào \(\Delta ADC\)vuông tại D, ta có:

\(BG=\sqrt{BD^2+GD^2}\)

=> \(BG=\sqrt{3^2+\left(\frac{8}{3}\right)^2}\)

=> \(BG=\sqrt{9+\frac{64}{9}}\)

=> \(BG=\sqrt{\frac{145}{9}}\)

=> BG \(\approx\)4, 01 (cm)

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

1
29 tháng 4 2016

5 )

tự vẽ hình nha bạn 

a)

Xét tam giác ABM và tam giác ACM  có :

AM  cạnh chung 

AB = AC (gt)

BM = CM  (gt)

suy ra : tam giác ABM = tam giác ACM ( c-c-c)

suy ra : góc BAM =  góc CAM  ( 2 góc tương ứng )

Hay AM  là tia phân giác của góc A

b)

Xét tam giác ABD  và tam giác ACD có :

AD cạnh chung 

góc BAM  = góc CAM ( c/m câu a)

AB = AC (gt)

suy ra tam giác ABD  = tam giác ACD ( c-g-c)

suy ra : BD = CD ( 2 cạnh tương ứng)  

C) hay tam giác BDC cân tại D