K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2016

khó quá !tick nhé mèo Linh

23 tháng 1 2016

ko hiểu nhưng chắc là 69

31 tháng 8 2015

cậu hk lớp 8a hả

 

14 tháng 11 2016

\(ĐK:x;y;z\in Z\)

Xét hiệu: (x3 + y3 + z3) - (x + y + z) 

= (x3 - x) + (y3 - y) + (z3 - z)

= x.(x2 - 1) + y.(y2 - 1) + z.(z2 - 1)

= x.(x - 1).(x + 1) + y.(y - 1).(y + 1) + z.(z - 1).(z + 1)

Dễ thấy x.(x - 1).(x + 1); y.(y - 1).(y + 1); z.(z - 1).(z + 1) đều là tích 3 số nguyên liên tiếp nên 3 tích này đều chia hết cho 2 và 3

Mà (2;3)=1 nên mỗi tích này chia hết cho 6

=> (x3 + y3 + z3) - (x + y + z) chia hết cho 6

Như vậy nếu x3 + y3 + z3 chia hết cho 6 thì x + y + z chia hết cho 6 và ngược lại (đpcm)

15 tháng 11 2016

bài này  mà lớp 7 thì khó đây , nhưng lớp 8,9 lại ưa dễ

3 tháng 6 2015

\(\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)\(\Leftrightarrow\)\(\frac{x+y}{xy}=\frac{z-\left(x+y+z\right)}{z\left(x+y+z\right)}\)\(\Leftrightarrow\)\(\frac{x+y}{xy}=\frac{-\left(x+y\right)}{z\left(x+y+z\right)}\)

\(\Leftrightarrow\)(x + y)z(x + y + z) + (x + y)xy = 0

\(\Leftrightarrow\)(x + y) [z(x + y + z) + xy] = 0

\(\Leftrightarrow\)(x + y)[z(x + z) + y(x + z)] = 0

\(\Leftrightarrow\) (x + y)(y + z)(z + x) = 0

Trường hợp 1: x + y = 0\(\Leftrightarrow\)x = -y\(\Leftrightarrow\)x2015 = -y2015\(\Leftrightarrow\)\(\frac{1}{x^{2015}}=-\frac{1}{y^{2015}}\)\(\Leftrightarrow\)\(\frac{1}{x^{2015}}+\frac{1}{y^{2015}}=0\)

và x2015  + y2015 = 0. Do đó \(\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{x^{2015}+y^{2015}+z^{2015}}\)

Trường hợp 2: y + z  = 0 làm tương tự

Trường hợp 3: x + z  = 0 làm tương tự

Vậy bài toán được chứng minh.

Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

tôi mong các bn đừng làm như vậy nha

AH
Akai Haruma
Giáo viên
30 tháng 7 2017

Lời giải:

Biến đổi:

\(P=(x+y)(y+z)(x+z)+xyz=xy(x+y)+yz(y+z)+xz(z+x)+3xyz\)

\(\Leftrightarrow P=(x+y+z)(xy+yz+xz)\)

Với \(x+y+z\vdots 6\Rightarrow P\vdots 6(1)\)

Giả sử \(x,y,z\) đều là các số nguyên lẻ, khi đó \(x+y+z\) lẻ thì không thể chia hết cho $6$ (vô lý)

Do đó , phải tồn tại ít nhất một trong ba số \(x,y,z\) là số chẵn

\(\Rightarrow 3xyz\vdots 6(2)\)

Từ \((1),(2)\Rightarrow Q=P-3xyz\vdots 6\)

Ta có đpcm