giải phương trình
2x.(3x-6)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow2x^2+10x-x^2+6x-9=x^2+6\)
=>16x-9=6
=>16x=15
hay x=15/16
\(PT\Leftrightarrow2x^2+10x-x^2+6x-9-x^2-6=0.\)
\(\Leftrightarrow16x-15=0.\\ \Leftrightarrow x=\dfrac{15}{16}.\)
`|2x+2|=|3x-2|`
`<=>` $\left[ \begin{array}{l}2x+2=3x-1\\2x+2=2-3x\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=3\\5x=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=3\\x=0\end{array} \right.$
Vậy `S={0,3}`
`2x+3=|3x-2|(x>=-2/3)`
`<=>` $\left[ \begin{array}{l}2x+3=3x-2\\2x+3=2-3x\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=5(tm)\\5x=-1\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=5\\x=-\dfrac15(tm)\end{array} \right.$
Vậy `S={5,-1/5}`
pt <=> \(2\left(x^2-4x\right)-12=3\sqrt{x^2-4x-5}\)
Đặt x^2 - 4x = a => 2a - 12 = 3căn(a-5) (ĐK: a>=6)...
Rồi dùng Viet
\(\text{ 2x+6=0 }\)
\(\Leftrightarrow2x=-6\)
\(\Leftrightarrow x=-3\)
\(S=\left\{-3\right\}\)
\(\text{3x-9=0 }\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\)
\(S=\left\{3\right\}\)
\(\text{4x+20=0}\)
\(\Leftrightarrow4x=-20\)
\(\Leftrightarrow x=-5\)
\(S=\left\{-5\right\}\)
\(\text{4x+1=6-x}\)
\(\Leftrightarrow4x+1-6-x=0\)
\(\Leftrightarrow3x-5=0\)
\(\Leftrightarrow3x=5\)
\(\Leftrightarrow x=\dfrac{5}{3}\)
\(S=\left\{\dfrac{5}{3}\right\}\)
a: 2x+6=0
=>2x=-6
=>x=-3
b: 3x-9=0
=>3x=9
=>x=3
c: 4x+20=0
=>x+5=0
=>x=-5
d: 4x+1=6-x
=>5x=5
=>x=1
ĐKXĐ: \(-\dfrac{1}{3}\le x\le6\)
\(\left(\sqrt{3x+1}-4\right)+\left(1-\sqrt{6-x}\right)+\left(3x^2-14x-5\right)=0\)
\(\Leftrightarrow\dfrac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\dfrac{x-5}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{1+\sqrt{6-x}}+3x+1\right)=0\)
\(\Leftrightarrow x-5=0\) (do \(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{1+\sqrt{6-x}}+3x+1>0;\forall x\))
\(\Rightarrow x=5\)
ĐKXĐ: \(\left\{{}\begin{matrix}3x+1>=0\\6-x>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{3}\\x< =6\end{matrix}\right.\)
\(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
=>\(\sqrt{3x+1}-4+1-\sqrt{6-x}+3x^2-14x-5=0\)
=>\(\dfrac{3x+1-16}{\sqrt{3x+1}+4}+\dfrac{1-6+x}{1+\sqrt{6-x}}+3x^2-15x+x-5=0\)
=>\(\dfrac{3\cdot\left(x-5\right)}{\sqrt{3x+1}+4}+\dfrac{x-5}{\sqrt{6-x}+1}+\left(x-5\right)\left(3x+1\right)=0\)
=>\(\left(x-5\right)\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{\sqrt{6-x}+1}+3x+1\right)=0\)
=>x-5=0
=>x=5(nhận)
1:
a: =>3x=6
=>x=2
b: =>4x=16
=>x=4
c: =>4x-6=9-x
=>5x=15
=>x=3
d: =>7x-12=x+6
=>6x=18
=>x=3
2:
a: =>2x<=-8
=>x<=-4
b: =>x+5<0
=>x<-5
c: =>2x>8
=>x>4
2x(3x-6)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)(tm)
Vậy phương trình có tập nghiệm S=\(\left\{0;2\right\}\)
Ta có: \(2x\left(3x-6\right)=0\)
mà 2>0
nên x(3x-6)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\3x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{0;2\right\}\)