CM 20^n+16^n-3^n-1 chia hết cho 323
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(20^n+16^n-3n-1=\left(20^n-1\right)+\left(16^n-3^n\right)\)
Ta lại có: \(20^n-1⋮19\left(20-1=19\right)\)
và \(16^n-3^n⋮19\)(vì n chẵn)
nên \(20^n+16^n-3^n-1⋮19\)
Ta có: \(20^n+16^n-3n-1=\left(20^n-3^n\right)+\left(16^n-1\right)\)
mà \(20^n-3^n⋮17\left(20-3=17\right)\)
và \(16^n-1⋮17\)(vì n chẵn)
nên \(20^n+16^n-3^n-1⋮17\)
mà \(20^n+16^n-3^n-1⋮19\)(cmt)
và ƯCLN(17,19)=1
nên \(20^n+16^n-3^n-1⋮19\cdot17\)
hay \(20^n+16^n-3^n-1⋮323\)(đpcm)
Ta có 323=17.19
+Chứng minh A⋮17
Thật vậy A=20n+16n−3n−1 = (16^n-1)+ (20^n-3^n)
Nhận xét⎨(16n−1)⋮17 (20n−3n)⋮17
⇒A⋮17 (1)
+Chứng minh A⋮19A⋮19
Thật vậy A=20n+16n−3n−1=A=20n+16n−3n−1= (16^n+3^n)+ (20^n-1)
Nhận xét ⎨(16n+3n)⋮19 (20n−1)⋮19
⇒A⋮19 (2)
Mà (17;19)=1(17;19)=1
Từ (1) và (2)⇒A⋮BCNN(17.19)
hay A⋮323 (đpcm)
\(323=17.19\)
+) \(20^n+16^n-3^n-1=\left(20^n-1\right)+\left(16^n-3^n\right)\)
\(20^n-1=20^n-1^n⋮\left(20-1\right)=19\)
\(16^n-3^n⋮\left(16+3\right)=19\) (vì n chẵn)
\(\Rightarrow20^n+16^n-3^n-1⋮19\)
+) \(20^n+16^n-3^n-1=\left(20^n-3^n\right)+\left(16^n-1\right)\)
\(20^n-3^n⋮\left(20-3\right)=17\)
\(16^n-1=16^n-1^n⋮\left(16+1\right)=17\) (vì n chẵn)
\(\Rightarrow20^n+16^n-3^n-1⋮17\)
Mà \(\left(17,19\right)=1\)
\(\Rightarrow20^n+16^n-3^n-1⋮\left(17.19\right)=323\)
đặt n = 3k+r (với r = 0, 1, 2)
2^n = 2^(3k+r) = 8^k.2^r
8 chia 7 dư 1 nên 8^k chia 7 dư 1
* nếu r = 0 => 2^n = 8^k chia 7 dư 1 => 2^n + 1 chia 7 dư 2
* nếu r = 1 => 2^n = 8^k.2 chia 7 dư 2 => 2^n + 1 chia 7 dư 3
* nếu r = 2 => 2^n = 8^k.4 chia 7 dư 4 => 2^n + 1 chia 7 dư 5
tóm lại 2^n không chia hết cho 7 với mọi n thuộc N
cũng từ trên ta thấy 2^n -1 chia hết cho 7 khi r = 0, tức là n = 3k , k thuộc N, k > 2
- - - - -
20ⁿ-1 = (20-1)[20^(n-1) + 20^(n-1) +..+1] = 19.p chia hết cho 19 (1*)
đặt n = 2k (do n chẳn)
16ⁿ-13ⁿ = 16^(2k) - 3^(2k) = 256^k - 9^k = (256-9)[256^(k-1).9 + 256^(k-2).9^2+..]
= 247.q = 19.13.q chia hết cho 19 (2*)
từ (1*) và (2*) => A = 29ⁿ - 1 + 16ⁿ - 3ⁿ chia hết cho 19
mặt khác: 16ⁿ-1 = 16^(2k) - 1 = 256^k - 1 = (256-1)[256^(k-1) + 256^(k-1) +..+1] = 255m = 17.15.m chia hết cho 17 (3*)
20ⁿ-3ⁿ = (20-3)[20^(n-1).3 + 20^(n-2).9 +..+3^(k-1)] = 17.p chia hết cho 17 (4*)
từ (3*) và (4*) => A chia hết cho 17
từ hai điều trên => A chia hết cho BCNN[19,17] = 323